-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrans.py
414 lines (350 loc) · 20.2 KB
/
trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import argparse
import eagerpy as ep
import foolbox
from utils.load_dataset import load_dataset
from foolbox.utils import accuracy, samples
from attack_framework.attacks import LinfPGDAttack_with_normalization
from utils.halftone import Halftone2d
from utils.quantise import Quantise2d
from utils.instantiate_model import instantiate_model
from models.resnet import *
from utils.inference import *
from models.ensemble import Ensemble
from attack_framework.multi_lib_attacks import attack_wrapper
from utils.str2bool import str2bool
from utils.instantiate_model import *
import os
parser = argparse.ArgumentParser(description='Test transferability', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', default='CIFAR10', type=str, help='Set dataset to use')
parser.add_argument('--device', default=0, type=int, help='individual Device')
parser.add_argument('--parallel', default=False, type=str2bool, help='Device in parallel')
parser.add_argument('--train_batch_size', default=1024, type=int, help='Train batch size')
parser.add_argument('--test_batch_size', default=1024, type=int, help='Test batch size')
parser.add_argument('--attack', default='PGD', type=str, help='Type of attack [PGD, CW]')
parser.add_argument('--visualize', default=False, type=str2bool, help='Visualize adversarial images')
parser.add_argument('--use_lib', default='custom', type=str, help='Use [foolbox, advtorch, custom] code for adversarial attack')
parser.add_argument('--use_bpda', default=True, type=str2bool, help='Use Backward Pass through Differential Approximation when using attack')
parser.add_argument('--iterations', default=40, type=int, help='Number of iterations of PGD')
parser.add_argument('--stepsize', default=0.01, type=float, help='stepsize for PGD')
parser.add_argument('--num_steps', default=0, type=int, help='Number of epsilons for PGD')
parser.add_argument('--conf', default=0, type=float, help='Confidence control for CW attack')
parser.add_argument('--save_path', default='./outputs/', type=str, help='Save path for the output file')
parser.add_argument('--load_model', default='FP', type=str, help='Quantization transfer function-Q1 Q2 Q4 Q6 Q8 HT FP')
parser.add_argument('--arch_load', default='resnet', type=str, help='Network architecture resnet, CIFARconv')
parser.add_argument('--torch_weights', default=False, type=str2bool, help='Use weights from torch trained model')
parser.add_argument('--dorefa_load', default=False, type=str2bool, help='Use Dorefa Net')
parser.add_argument('--qout_load', default=False, type=str2bool, help='Output layer weight quantisation')
parser.add_argument('--qin_load', default=False, type=str2bool, help='Input layer weight quantisation')
parser.add_argument('--abit_load', default=32, type=int, help='activation quantisation precision')
parser.add_argument('--wbit_load', default=32, type=int, help='Weight quantisation precision')
parser.add_argument('--suffix_load', default='', type=str, help='Suffix of load model')
parser.add_argument('--opt_src', default='', type=str, help='Default is SGD, use \'_adam\' for Adam ')
parser.add_argument('--opt_tgt', default='', type=str, help='Default is SGD, use \'_adam\' for Adam ')
parser.add_argument('--q_tf', default='all', type=str, help='Quantization transfer function-Q1 Q2 Q4 Q6 Q8 HT FP')
parser.add_argument('--q_number', default=0, type=int, help='if q_tf=all set 0=FP 1=Q1 2=Q2 3=Q4 4=Q6 5=Q8 6=HT')
parser.add_argument('--dorefa_test', default=False, type=str2bool, help='Use Dorefa Net')
parser.add_argument('--qout_test', default=False, type=str2bool, help='Output layer weight quantisation')
parser.add_argument('--qin_test', default=False, type=str2bool, help='Input layer weight quantisation')
parser.add_argument('--abit_test', default=1, type=int, help='activation quantisation precision')
parser.add_argument('--wbit_test', default=32, type=int, help='Weight quantisation precision')
parser.add_argument('--random_start', default=True, type=str2bool, help='Random start for adv attack')
parser.add_argument('--analysis', default='arch', type=str , help='Analysis type, Arch, Input Quant, Weight Quant or Activation Quant')
global args
args = parser.parse_args()
args.save_path = os.path.join(args.save_path, args.dataset.lower(), 'transferability/')
print(args)
if args.analysis.lower() != 'seed':
args.save_path = args.save_path + args.attack + "_" + args.analysis
else:
args.save_path = args.save_path + args.attack + "_"
args.attack = args.attack.lower()
args.suffix_load = args.opt_src + args.suffix_load
if(args.attack.lower() == "cw"):
args.save_path += str(int(args.conf)) + "_"
if args.attack.lower() == "fgsm":
args.attack ="pgd"
args.iterations = 1
args.stepsize = 1.0
if args.load_model=='A1':
args.load_model='FP'
args.dorefa_load=True
args.abit=1
args.wbit=32
class Ensemble(nn.Module):
def __init__(self,
device,
models,
num_classes):
super(Ensemble, self).__init__()
print("Loading ensemble models:")
self.models = []
self.model_name = []
self.quantization = []
for precision_type, arch , suffix in models:
if args.dorefa_test and len(suffix) >= 7:
individual_model, name, q = instantiate_model(dataset=args.dataset,
load_model=precision_type,
q_tf=precision_type,
arch=arch,
suffix=str(suffix[7:]),
dorefa=True,
abit=int(suffix[2:4]),
wbit=int(suffix[5:7]),
num_classes=num_classes,
device=device,
torch_weights=args.torch_weights,
load=True)
else:
individual_model, name, q = instantiate_model(dataset=args.dataset,
load_model=precision_type,
q_tf=precision_type,
arch=arch,
suffix=suffix,
num_classes=num_classes,
device=device,
torch_weights=args.torch_weights,
load=True)
self.models.append(individual_model.eval())
self.quantization.append(q)
self.model_name.append(name)
self.device = device
self.num_classes = num_classes
self.net_type = 'ensemble'
self.num_models = len(self.models)
def forward(self, inputs):
out = []
for i, ind_model in enumerate(self.models):
out_ind = ind_model(self.quantization[i](inputs))
out.append(out_ind)
return out
#--------------------------------------------------
# Parse input arguments
#--------------------------------------------------
# Parameters
batch_size = args.train_batch_size
b_size_test = args.test_batch_size
# Setup right device to run on
if args.parallel:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cuda'":" + str(args.device) if torch.cuda.is_available() else 'cpu')
train_loader, val_loader, test_loader, normalization_function, unnormalization_function, num_classes, mean, std, img_dim = load_dataset(dataset=args.dataset,
train_batch_size=batch_size,
test_batch_size=b_size_test,
device=device)
# Instantiate model
source_net, model_name, Q_src = instantiate_model(dataset=args.dataset,
num_classes=num_classes,
load_model = args.load_model,
q_tf=args.load_model,
arch=args.arch_load,
dorefa=args.dorefa_load,
abit=args.abit_load,
wbit=args.wbit_load,
qin=args.qin_load,
qout=args.qout_load,
suffix=args.suffix_load,
torch_weights=args.torch_weights,
load=True,
device=device)
if(args.dataset.lower() == 'cifar10' or args.dataset.lower() == 'cifar100'):
if(args.analysis.lower() == 'arch'):
models = [('FP','resnet', args.suffix_load),
('FP','resnet34', args.suffix_load),
('FP','resnet50', args.suffix_load),
('FP','resnet101', args.suffix_load),
('FP','vgg11', args.suffix_load),
('FP','vgg19', args.suffix_load),
('FP','vgg11bn', args.suffix_load),
('FP','vgg19bn', args.suffix_load)]
elif(args.analysis.lower() == 'seed'):
models = [('FP', args.arch_load, args.opt_tgt + '_1'),
('FP', args.arch_load, args.opt_tgt + '_2'),
('FP', args.arch_load, args.opt_tgt + '_3'),
('FP', args.arch_load, args.opt_tgt + '_4'),
('FP', args.arch_load, args.opt_tgt + '_5'),
('FP', args.arch_load, args.opt_tgt + '_6'),
('FP', args.arch_load, args.opt_tgt + '_7'),
('FP', args.arch_load, args.opt_tgt + '_8'),
('FP', args.arch_load, args.opt_tgt + '_9'),
('FP', args.arch_load, args.opt_tgt + '_10')]
elif(args.analysis.lower() == 'quant'):
models = [('HT','resnet', args.suffix_load),
('Q1','resnet', args.suffix_load),
('Q2','resnet', args.suffix_load),
('Q4','resnet', args.suffix_load),
('Q6','resnet', args.suffix_load),
('Q8','resnet', args.suffix_load),
('FP','resnet', args.suffix_load)]
elif(args.analysis.lower() == 'act'):
models = [('FP','resnet', '_a01w32'+args.suffix_load),
('FP','resnet', '_a02w32'+args.suffix_load),
('FP','resnet', '_a04w32'+args.suffix_load),
('FP','resnet', '_a08w32'+args.suffix_load),
('FP','resnet', '_a16w32'+args.suffix_load),
('FP','resnet', args.suffix_load)]
elif(args.analysis.lower() == 'weight'):
models = [('FP','resnet', '_a32w01'+args.suffix_load),
('FP','resnet', '_a32w02'+args.suffix_load),
('FP','resnet', '_a32w04'+args.suffix_load),
('FP','resnet', '_a32w08'+args.suffix_load),
('FP','resnet', '_a32w16'+args.suffix_load),
('FP','resnet', args.suffix_load)]
else:
if(args.analysis.lower() == 'arch'):
args.torch_weights=True
models = [('FP','torch_resnet18', ''),
('FP','torch_resnet34', ''),
('FP','torch_resnet101', ''),
('FP','torch_vgg11', ''),
('FP','torch_vgg19', ''),
('FP','torch_densenet121', ''),
('FP','torch_wide_resnet50_2', '')]
elif(args.analysis.lower() == 'quant'):
models = [('HT','torch_resnet18', ''),
('Q1','torch_resnet18', ''),
('Q2','torch_resnet18', ''),
('Q4','torch_resnet18', ''),
('Q6','torch_resnet18', ''),
('Q8','torch_resnet18', ''),
('FP','torch_resnet18', '')]
else:
raise ValueError("Unsupported")
target_net = Ensemble(device=device, models=models, num_classes=num_classes)
test_name = 'all'
print('Warning: Not using DataParallel')
target_net = target_net.to(device)
target_net.eval()
source_net.eval()
attack_params = { 'lib': args.use_lib,
'attack': args.attack,
'iterations': args.iterations,
'epsilon': 0.03,
'stepsize': args.stepsize,
'confidence': args.conf,
'bpda': args.use_bpda,
'preprocess': Q_src,
'custom_norm_func': normalization_function,
'random': False,
'targeted': False }
dataset_params = { 'mean': mean,
'std': std,
'num_classes': num_classes }
params = {'attack_params': attack_params,
'dataset_params': dataset_params}
attack = attack_wrapper(source_net, device, **params)
iterations = args.iterations
def test(epsilon):
correct = 0
total = 0
norm_total= 0
gen_adv_imgs = 0
L2 = 0
Linf = 0
num_trans_imgs = torch.zeros((target_net.num_models, 1), device=device)
num_gen_imgs = torch.zeros((target_net.num_models, 1), device=device)
conf = torch.zeros((target_net.num_models, 1), device=device)
for batch_idx, (data, label) in enumerate(test_loader):
data = data.to(device)
label = label.to(device)
# Generate adversaries on the source network
perturbed_data, un_norm_perturbed_data = attack.generate_adversary(data, label, update_epsilon=epsilon)
with torch.no_grad():
# Re-classify the perturbed image
output = source_net(Q_src(perturbed_data))
# Get the index of the max log-probability
final_pred = output.max(1, keepdim=True)[1]
src_adv = final_pred.squeeze(dim=1)
total += data.shape[0]
with torch.no_grad():
output = source_net(Q_src(normalization_function(data)))
# Get the index of the max log-probability
final_pred = output.max(1, keepdim=True)[1]
correct += (final_pred == label).sum()
src_clean = final_pred.squeeze(dim=1)
norm_total+= torch.sum(torch.where ((src_clean == label) & (src_adv != label), torch.ones_like(label), torch.zeros_like(label)))
L2 += torch.sum(torch.where((src_clean == label) & (src_adv != label),torch.norm(data - un_norm_perturbed_data, p=2, dim=(1,2,3)), torch.zeros_like(label).float() ))
Linf += torch.sum(torch.where((src_clean == label) & (src_adv != label) , torch.norm(data - un_norm_perturbed_data, p=float('inf'), dim=(1,2,3)), torch.zeros_like(label).float() ) )
# Was previously correctly classifed by the source model and was then incorrectly classfifed by the target
adv = torch.where((src_adv != label) & (src_clean == label), torch.ones_like(label), torch.zeros_like(label))
current_adv_images = torch.sum(adv)
gen_adv_imgs += current_adv_images
with torch.no_grad():
target_adv = target_net(perturbed_data)
target_clean = target_net(normalization_function(data))
for i in range(target_net.num_models):
trgt_adv = target_adv[i].max(1, keepdim=True)[1].squeeze(-1)
trgt_clean = target_clean[i].max(1, keepdim=True)[1].squeeze(-1)
transferred = torch.where ((trgt_clean == label) & (trgt_adv != label) & (src_adv != label ) & (src_clean == label),
torch.ones_like(label),
torch.zeros_like(label))
# Number of the adversarial images to the source such that the clean version of the images
# are correctly classified correctly by both the source and target models
common_images = torch.where ((trgt_clean == label) & (src_adv != label) & (src_clean == label),
torch.ones_like(label),
torch.zeros_like(label))
num_gen_imgs[i] += torch.sum(common_images)
num_trans_imgs[i] += torch.sum(transferred)
prob = torch.nn.functional.softmax(target_adv[i], dim=1).max(1)[0]
conf[i] += torch.where ((trgt_clean == label) & (trgt_adv != label) & (src_adv != label ) & (src_clean == label),
prob,
torch.zeros_like(label).float()).sum()
# norm_2 = float(L2.item()) / float(total)
# norm_inf = float(Linf.item()) / float(total)
# Calculate final accuracy for this epsilon
final_acc = float(correct) / float(total)
norm_2 = float(L2.item()) / num_gen_imgs.max() # .max Corresponds to generated on the source
norm_inf = float(Linf.item()) / num_gen_imgs.max()
print("L2 {:.6f} Linf {:.6f}".format(norm_2, norm_inf))
# Return the accuracy and an adversarial example
return final_acc, num_trans_imgs, num_gen_imgs, conf, norm_2, norm_inf
if(args.num_steps > 0):
num_steps = args.num_steps + 1
step = 0.1 / num_steps
epsilons = np.arange(step, 0.1, step)
else:
epsilons = np.array([8.0/255.0])
if args.attack == "l2pgd":
epsilons = np.array([0.145])
num_adv_images = []
num_trans_images = []
percent = []
l2 = []
linf = []
# Run test for each epsilon
for eps in epsilons:
torch.cuda.empty_cache()
_, num_trans_imgs, common_gen_adv_images, conf, L2, Linf = test(eps)
num_adv_images.append(common_gen_adv_images)
num_trans_images.append(num_trans_imgs.view((num_trans_imgs.shape[0],1)))
percent.append(num_trans_imgs / common_gen_adv_images)
l2.append(L2)
linf.append(Linf)
if args.opt_tgt != args.opt_src:
if args.opt_tgt =="" :
file_name = model_name + args.opt_tgt + "_src.pt"
elif args.opt_src =="" :
file_name = model_name + args.opt_tgt + "_tgt.pt"
else:
file_name = model_name + ".pt"
print (torch.cat(percent, dim=1))
print(common_gen_adv_images)
conf = conf / num_trans_images[0]
print("src adv conf {:.4f}, target adv conf {:.4f}".format(conf[0][0], conf[1:].mean()))
print("Trans mean {:.2f} std {:.2f}".format(num_trans_images[0][1:].mean(), num_trans_images[0][1:].std()))
print("Gen mean {:.2f} std {:.2f}".format(common_gen_adv_images[1:].mean(), common_gen_adv_images[1:].std()))
print(conf)
data = {'num_adv_images': common_gen_adv_images,
'num_trans_images': num_trans_images,
'percent': percent,
'L2': l2,
'Linf': linf,
'conf_src': conf[0][0],
'conf_tgt': conf[1:],
'epsilons': epsilons}
torch.save(data, args.save_path + file_name)