-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sv_rag.py
61 lines (47 loc) · 1.98 KB
/
test_sv_rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import json
from tqdm import tqdm
import os
os.system('clear')
from util.model_util import SVRAG_InternVL2, SVRAG_Phi
from util.print_result import print_top_k_accuracy
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='Phi3v',
choices=['Phi3v', 'InternVL2'],
help="retriever name",
type=str)
parser.add_argument("--k", default=1, help="top k image to use in QA", type=int)
args = parser.parse_args()
if __name__ == "__main__":
if args.model == 'Phi3v':
model = SVRAG_Phi(model_name='puar-playground/Col-Phi-3-V')
elif args.model == 'InternVL2':
model = SVRAG_InternVL2(model_name='puar-playground/Col-InternVL2-4B')
# load test data
test_data = json.load(open('slidevqa_dev.json', 'r'))
data_point = test_data['aguidetoindonesiasnewgovernment-141104024232-conversion-gate02_95']
# set input
question_list = data_point['question']
answer_list = data_point['answer']
image_list = data_point['image_urls']
true_indicies = data_point['index_list']
# Do retrieval
_, retrieved_indicies = model.retrieve(query_list=question_list, image_list=image_list)
retrieved_indicies = retrieved_indicies.tolist()
# evaluate retrieval
print('Doing retrieval')
acc_str = print_top_k_accuracy([[true_indicies, retrieved_indicies]], k_list=[1, 5])
print(acc_str)
# generate answer
print('Doing question answering')
model.disable_lora_if_present()
for question, answer, retrieved_index in zip(question_list, answer_list, retrieved_indicies):
# extract top images
retrieved_index_top = retrieved_index[:args.k]
true_img_list = [x for i, x in enumerate(image_list) if i in retrieved_index_top]
# generate
answer_model = model.ask(question, true_img_list)
print('>' * 120)
print(question)
print(f'answer_true: {answer}')
print(f'answer_model: {answer_model}')