-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHB1110_Coding.R
executable file
·294 lines (251 loc) · 17.4 KB
/
HB1110_Coding.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Script for data analysis related to HB1110 data request
#
# It attaches various dummies to the input parcels file
# and writes two output parcels file, one with all parcels included
# in the bill analysis and one with parcels likely to develop.
# It then creates several city-level summaries and exports
# the into csv files.
#
# Last update: 06/27/2023
# Drew Hanson & Hana Sevcikova
if(! "data.table" %in% installed.packages())
install.packages("data.table")
library(data.table)
# Run this script from the directory of this file, unless data_dir is set as an absolute path
setwd("J:/Projects/Bill-Analysis/2023/scripts")
#setwd("~/psrc/R/bill-analysis/scripts")
# Settings
write.parcels.file <- TRUE
write.summary.files.to.csv <- FALSE
write.summary.files.to.excel <- TRUE
data_dir <- "../data" # directory where the data files below live
# (it's a relative path to the script location; can be also set as an absolute path)
parcels_file_name <- "parcels_for_bill_analysis.csv"
#parcel_vision_hct_file_name <- "parcel_vision_hct.csv"
#parcel_vision_hct_file_name <- "revised_buffers_1110_v5.csv"
parcel_vision_hct_file_name <- "parcel_tags.csv"
cities_file_name <- "cities.csv"
tier_file_name <- "cities_coded_all_20230505.csv"
# tier definitions
tier_constraints <- list(`1` = c(4, 2.7, 2, 1.5), # in the form c(hct_constraint, hct_mixed_constraint, non-hct_constraint, non-hct_mixed_constraint)
`2` = c(6, 4, 4, 3),
`3` = c(2, 1.5, 2, 1.5)
#`1` = c(6, 4) # original constraint
)
#tier_column <- "Original"
#tier_column <- "Substitute"
tier_column <- "Rev_swm"
#tier_column <- "Final"
# size restriction for parcels to be included
min_parcel_sqft_for_analysis <- 2000
# name of the output files; should include "XXX" which will be replaced by "in_bill" and "to_develop" to distinguish the two files
output_parcels_file_name <- paste0("selected_parcels_XXX-", Sys.Date(), ".csv") # will be written into data_dir
# directory name where results should be written
output_dir <- paste0("HB1110_results-", Sys.Date())
# Read input files
parcels_for_bill_analysis <- fread(file.path(data_dir, parcels_file_name)) # parcels
parcel_vision_hct <- fread(file.path(data_dir, parcel_vision_hct_file_name)) # HCT locations
cities <- fread(file.path(data_dir, cities_file_name)) # cities table
tiers_by_city <- fread(file.path(data_dir, tier_file_name))[, c("city_id", tier_column), with = FALSE] # table containing tier assignment to cities
setnames(tiers_by_city, tier_column, "tier") # rename the tier column to "tier" for simpler access
cities <- merge(cities, tiers_by_city, all = TRUE)
cities[is.na(tier), tier := 0]
# Get all non-zero tiers and check if there is a definition for them
tiers <- as.character(unique(cities[tier > 0, tier]))
if(any(! tiers %in% names(tier_constraints)))
stop("Missing definition of tier(s) ", paste(tiers[! tiers %in% names(tier_constraints)], collapse = ", "), " in the tier_constraints object.")
#Fixes City ID error in the input dataset (might not be needed after it's corrected in the input file)
parcels_for_bill_analysis[city_id==95, city_id := 96]
# Codes records that fall in cities/geographies excluded from HB1110 bill requirements with 0's and and everything else with 1's
parcels_for_bill_analysis[cities, city_tier := i.tier, on = "city_id"]
# Creates updated parcel table with "hct_vision" field added
#parcel_vision_hct[, vision_hct := any(hct_quarter_mile, parks, schools)]
#parcels_updated <- merge(parcels_for_bill_analysis, parcel_vision_hct[, .(parcel_id, vision_hct)], all=TRUE)
parcels_updated <- copy(parcels_for_bill_analysis)
parcels_updated[, in_hct := 0]
parcels_updated[parcel_id %in% parcel_vision_hct[hct_1110 == 1,
parcel_id], in_hct := 1]
#Creates "res_zone" field that denotes residential zoned parcels
parcels_updated[, res_zone := 0]
parcels_updated[DUcap > 0 & is_mixed_cap == 0, res_zone := 1]
#Creates "mix_zone" field that denotes mixed-use zoned parcels
parcels_updated[, mixed_zone := 0]
parcels_updated[DUcap > 0 & is_mixed_cap == 1, mixed_zone := 1]
parcels_updated[, DUaltnetcap := DUcap]
# update net capacity for mixed use (use 70% of total capacity)
parcels_updated[mixed_zone == 1, DUaltnetcap := DUaltnetcap * 0.7]
# exclude all parks
parcels_updated[land_use_type_id == 19, `:=`(res_zone = 0, mixed_zone = 0)]
#Creates a field of potential DUs and denote parcels that are already zoned to meet requirements of bill (Step 3 in Methodology document)
parcels_updated[, `:=`(potential_du = DUaltnetcap, already_zoned = 0, zoning_constr = 0)]
for(tier in tiers) { # iterate over the non-zero city tiers
parcels_updated[city_tier == tier & in_hct == 1 & mixed_zone == 0, `:=`(potential_du = pmax(potential_du, tier_constraints[[tier]][1]), zoning_constr = tier_constraints[[tier]][1])]
parcels_updated[city_tier == tier & in_hct == 1 & mixed_zone == 1, `:=`(potential_du = pmax(potential_du, tier_constraints[[tier]][2]), zoning_constr = tier_constraints[[tier]][1])]
parcels_updated[city_tier == tier & in_hct == 0 & mixed_zone == 0, `:=`(potential_du = pmax(potential_du, tier_constraints[[tier]][3]), zoning_constr = tier_constraints[[tier]][3])]
parcels_updated[city_tier == tier & in_hct == 0 & mixed_zone == 1, `:=`(potential_du = pmax(potential_du, tier_constraints[[tier]][4]), zoning_constr = tier_constraints[[tier]][3])]
}
#parcels_updated[city_tier > 0 & DUaltnetcap >= potential_du, already_zoned := 1]
parcels_updated[city_tier > 0 & DUcap >= zoning_constr, already_zoned := 1] # compare 100% capacity with 100% potential zoning
parcels_updated[, net_du := pmax(0, potential_du - residential_units)] # compute potential net capacity
parcels_updated[, current_net_du := pmax(0, DUaltnetcap - residential_units)] # current net capacity
#Creates a field denoting records with parcel square footage of less then a threshold (2000sf)
parcels_updated[, sq_ft_lt_threshold := 0]
parcels_updated[parcel_sqft < min_parcel_sqft_for_analysis, sq_ft_lt_threshold := 1]
#Creates "sf_use" field denoting single family parcels
parcels_updated[, sf_use := 0]
parcels_updated[residential_units == 1, sf_use := 1]
#Creates "vacant" field denoting vacant parcels
parcels_updated[, vacant := 0]
parcels_updated[Nblds == 0, vacant := 1]
#Creates "land_greater_improvement" field to denotes parcels that have land value that is greater than the improvement value
parcels_updated[is.na(improvement_value), improvement_value := 0]
parcels_updated[, land_greater_improvement := 0]
parcels_updated[land_value > improvement_value, land_greater_improvement := 1]
#Creates "built_sqft_less_1400" field to denotes parcels that have a built square footage of less than 1,400
parcels_updated[, built_sqft_less_1400 := 0]
parcels_updated[residential_sqft < 1400, built_sqft_less_1400 := 1]
#Adds city_name field to final parcel table
parcels_final <- merge(parcels_updated, cities[, .(city_id, city_name)], by = "city_id")
# split parcels into two sets: 1. all parcels included in the bill, 2. parcels likely to develop
parcels_in_bill <- parcels_final[city_tier > 0 & already_zoned == 0 & (res_zone == 1 | mixed_zone == 1)]
parcels_likely_to_develop <- parcels_final[city_tier > 0 & already_zoned == 0 & (res_zone == 1 | mixed_zone == 1) & sq_ft_lt_threshold == 0 & land_greater_improvement == 1 & built_sqft_less_1400 == 1 & (vacant == 1 | sf_use == 1), ]
parcels_in_bill[, parcel_likely_to_develop := parcel_id %in% parcels_likely_to_develop$parcel_id]
#Writes csv output files
if(write.parcels.file) {
#remove all fields from parcel tables except parcel_id,in_hct,and city_tier
columns_to_export <- c("city_id", "parcel_id", "county_id", "census_2010_block_id",
"is_inside_urban_growth_boundary", "land_value", "land_use_type_id", "gross_sqft", "parcel_sqft",
"residential_units", "non_residential_sqft", "Nblds", "lat", "lon", "x_coord_sp", "y_coord_sp",
"residential_sqft", "improvement_value", "city_tier", "in_hct",
"parcel_likely_to_develop", "res_zone", "mixed_zone", "DUcap",
"sq_ft_lt_threshold", "sf_use", "vacant", "land_greater_improvement", "built_sqft_less_1400",
"in_hct","city_tier", "mixed_zone", "city_name")
parcels_in_bill_to_save <- parcels_in_bill[, columns_to_export, with = FALSE]
parcels_likely_to_develop_to_save <- parcels_likely_to_develop[, c("parcel_id", "in_hct","city_tier","mixed_zone")]
# write to disk into a subdirectory of output_dir
pcl_dir <- file.path(data_dir, output_dir, "parcels")
if(!dir.exists(pcl_dir)) dir.create(pcl_dir, recursive = TRUE)
fwrite(parcels_in_bill_to_save, file.path(pcl_dir, gsub("XXX", "in_bill", output_parcels_file_name)))
fwrite(parcels_likely_to_develop_to_save, file.path(pcl_dir, gsub("XXX", "for_mapping_to_develop", output_parcels_file_name)))
cat("\nParcels written into ", file.path(pcl_dir, output_parcels_file_name), "\n")
}
# Functions for generating summaries
create_summary_detail <- function(dt, col_prefix, column_to_sum = "one", decimal = 0){
detail <- dt[, .(
total_parcels = round(sum(get(column_to_sum)), decimal),
res_vacant = round(sum((res_zone == 1 & vacant == 1)*get(column_to_sum)), decimal),
res_sf_use = round(sum((res_zone == 1 & sf_use == 1)*get(column_to_sum)), decimal),
res_other_use = round(sum((res_zone == 1 & vacant == 0 & sf_use == 0)*get(column_to_sum)), decimal),
mix_vacant = round(sum((mixed_zone == 1 & vacant == 1)*get(column_to_sum)), decimal),
mix_sf_use = round(sum((mixed_zone == 1 & sf_use == 1)*get(column_to_sum)), decimal),
mix_other_use = round(sum((mixed_zone == 1 & vacant == 0 & sf_use == 0)*get(column_to_sum)), decimal),
other = round(sum((res_zone == 0 & mixed_zone == 0)*get(column_to_sum)), decimal)
), by = "city_id"][order(city_id)]
# add prefix to column names (excluding city_id which is first)
setnames(detail, colnames(detail)[-1], paste0(col_prefix, colnames(detail)[-1]))
return(detail)
}
create_summary <- function(dt, column_to_sum = "one", decimal = 0){
# part that involves all parcels
summary_all <- dt[, .(
total_parcels = round(sum(get(column_to_sum)), decimal),
already_zoned = round(sum((already_zoned == 1)*get(column_to_sum)), decimal)
), by = "city_id"][order(city_id)]
# generate HCT and nonHCT parts of the summary
summary_hct <- create_summary_detail(dt[in_hct == 1 & already_zoned == 0], col_prefix = "hct_",
column_to_sum = column_to_sum, decimal = decimal)
summary_nonhct <- create_summary_detail(dt[in_hct == 0 & already_zoned == 0], col_prefix = "nhct_",
column_to_sum = column_to_sum, decimal = decimal)
# merge together and add city_name
summary_final <- merge(merge(cities[, .(city_id, city_name, tier)], summary_all, by = "city_id", all = TRUE),
merge(summary_hct, summary_nonhct, by = "city_id", all = TRUE),
by = "city_id", all = TRUE)[order(-tier, city_id)]
return(summary_final)
}
# Create summaries
parcels_final[, one := 1] # dummy for summing # of parcels
summaries <- list()
summaries[["all_parcels"]] <- create_summary(parcels_final)
summaries[["filter_parcel_sqft"]] <- create_summary(parcels_final[sq_ft_lt_threshold == 0])
summaries[["filter_parcel_sqft_under1400"]] <- create_summary(parcels_final[sq_ft_lt_threshold == 0 & built_sqft_less_1400 == 1])
summaries[["filter_parcel_sqft_land_value"]] <- create_summary(parcels_final[sq_ft_lt_threshold == 0 & land_greater_improvement == 1])
parcels_filtered_all <- parcels_final[sq_ft_lt_threshold == 0 & land_greater_improvement == 1 & built_sqft_less_1400 == 1]
summaries[["filter_all"]] <- create_summary(parcels_filtered_all)
summaries[["zoned_du_fltr_sqft"]] <- create_summary(parcels_final[sq_ft_lt_threshold == 0], column_to_sum = "potential_du")
summaries[["exist_du_fltr_sqft"]] <- create_summary(parcels_final[sq_ft_lt_threshold == 0], column_to_sum = "residential_units")
summaries[["net_du_fltr_sqft"]] <- create_summary(parcels_final[sq_ft_lt_threshold == 0], column_to_sum = "net_du")
summaries[["zoned_du_fltr_all"]] <- create_summary(parcels_filtered_all, column_to_sum = "potential_du")
summaries[["exist_du_fltr_all"]] <- create_summary(parcels_filtered_all, column_to_sum = "residential_units")
summaries[["net_du_fltr_all"]] <- create_summary(parcels_filtered_all, column_to_sum = "net_du")
summaries[["current_net_du_fltr_sqft"]] <- create_summary(parcels_final[sq_ft_lt_threshold == 0], column_to_sum = "current_net_du")
summaries[["current_net_du_fltr_all"]] <- create_summary(parcels_filtered_all, column_to_sum = "current_net_du")
# create top page with regional summaries
top_page <- top_page_total <- NULL
for(sheet in names(summaries)){
top_page_total <- rbind(top_page_total, data.table(indicator = sheet,
tier = -1,
summaries[[sheet]][tier > 0, lapply(.SD, sum, na.rm = TRUE),
.SDcols = setdiff(colnames(summaries[[sheet]]), c("city_id", "city_name", "tier"))]),
fill = TRUE)
}
description <- list(
all_parcels = "Total number of parcels",
filter_parcel_sqft = paste("Parcels larger than", min_parcel_sqft_for_analysis, "sqft"),
filter_parcel_sqft_under1400 = paste("Parcels larger than", min_parcel_sqft_for_analysis, "sqft that have built residential sqft smaller than 1400"),
filter_parcel_sqft_land_value = paste("Parcels larger than", min_parcel_sqft_for_analysis, "sqft with land value > improvement value"),
filter_all = paste("Parcels larger than", min_parcel_sqft_for_analysis, "sqft passing both market criteria"),
zoned_du_fltr_sqft = paste("Gross allowable dwelling units on parcels larger than", min_parcel_sqft_for_analysis, "sqft"),
exist_du_fltr_sqft = paste("Existing dwelling units on parcels larger than", min_parcel_sqft_for_analysis, "sqft"),
net_du_fltr_sqft = paste("Net allowable dwelling units on parcels larger than", min_parcel_sqft_for_analysis, "sqft"),
zoned_du_fltr_all = paste("Gross allowable dwelling units on parcels larger than", min_parcel_sqft_for_analysis, "sqft passing both market criteria"),
exist_du_fltr_all = paste("Existing dwelling units on parcels larger than", min_parcel_sqft_for_analysis, "sqft passing both market criteria"),
net_du_fltr_all = paste("Net allowable dwelling units on parcels larger than", min_parcel_sqft_for_analysis, "sqft passing both market criteria"),
current_net_du_fltr_sqft = paste("Net dwelling units allowable by current zoning on parcels larger than", min_parcel_sqft_for_analysis, "sqft"),
current_net_du_fltr_all = paste("Net dwelling units allowable by current zoning on parcels larger than", min_parcel_sqft_for_analysis, "sqft passing both market criteria")
)
descr <- cbind(data.table(description), indicator = names(description))
top_page_total <- merge(descr, top_page_total, by = "indicator", sort = FALSE)
# summaries by tier
for(sheet in names(summaries)){
top_page <- rbind(top_page, top_page_total[indicator == sheet])
top_page <- rbind(top_page, data.table(indicator = "",
description = "",
summaries[[sheet]][, lapply(.SD, sum, na.rm = TRUE),
.SDcols = setdiff(colnames(summaries[[sheet]]), c("city_id", "city_name", "tier")), by = "tier"]),
fill = TRUE)
}
top_page[,tier := as.character(tier)][tier == -1, tier := "1,2,3"]
#summaries[["existing_units"]] <- existing_units
summaries <- c(list(Region = top_page), summaries) # set the regional summaries as the first sheet
if(write.summary.files.to.csv || write.summary.files.to.excel){
summary_dir <- file.path(data_dir, output_dir)
if(!dir.exists(summary_dir)) dir.create(summary_dir) # create directory if not exists
if(write.summary.files.to.csv) {
csvdir <- file.path(summary_dir, "csv")
if(!dir.exists(csvdir)) dir.create(csvdir) # create sub-directory if not exists
for(table in names(summaries))
fwrite(summaries[[table]], file = file.path(csvdir, paste0(table, ".csv")))
}
if(write.summary.files.to.excel) {
library(openxlsx)
# style of the header
style <- createStyle(
textDecoration = "BOLD", fontColour = "#FFFFFF", fontSize = 12, fgFill = "#4F80BD"
)
# set the width of columns and how many columns should be freezed
colwidths <- list()
firstcol <- list()
for(sheet in names(summaries)){
colwidths[[sheet]] <- rep(10, ncol(summaries[[sheet]]))
colwidths[[sheet]][colnames(summaries[[sheet]]) == "city_id"] <- 7
colwidths[[sheet]][colnames(summaries[[sheet]]) == "tier"] <- 5
colwidths[[sheet]][colnames(summaries[[sheet]]) == "city_name"] <- 20
firstcol[[sheet]] <- 4
}
colwidths[["Region"]][1:2] <- c(25, 40)
colwidths[["Region"]][-(1:3)] <- 15
write.xlsx(summaries, file = file.path(summary_dir, "HB1110_all_tables.xlsx"),
headerStyle = style, colWidths = colwidths, firstActiveRow = 2, firstActiveCol = firstcol)
}
cat("\nSummary files written into ", summary_dir, "\n")
}