-
Notifications
You must be signed in to change notification settings - Fork 0
/
process_assessor_king.R
567 lines (464 loc) · 27.8 KB
/
process_assessor_king.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#Install library packages before running
library(tidyverse)
library(writexl)
library(data.table)
library(rlist)
-----------------------------------------------------------------------------------------------------------------------------------------------------------
#Current Year Processing
# Data directories
data_dir <- "J:/Projects/Assessor/assessor_permit/king/data/2024"
current_data_dir <- file.path(data_dir, "extracts/current")
base_data_dir <- file.path(data_dir, "extracts/base_year_2009")
inputs_data_dir <- file.path(data_dir, "script_inputs")
outputs_data_dir <- "J:/Projects/Assessor/assessor_permit/king/data/2024/script_outputs/"
# file names
id_files <- list(pin_translation = "PIN_Translation_2023_2009.csv",
city_tract = "city_tract.csv",
full_city_list = "full_city_list.csv",
full_tract_list = "full_tract20_list.csv",
mobile_home_park_openings = "mobile_home_park_openings.csv",
mobile_home_park_closures = "mobile_home_park_closures.csv")
bldg_files <- list(apts = "EXTR_AptComplex.csv",
resbldgs = "EXTR_ResBldg.csv",
condo_complex = "EXTR_CondoComplex.csv",
condo_units = "EXTR_CondoUnit2.csv",
comm_bldg = "EXTR_CommBldg.csv",
comm_bldg_section = "EXTR_CommBldgSection.csv",
parcels = "EXTR_Parcel.csv",
unit_breakdown = "EXTR_UnitBreakdown.csv",
look_up = "EXTR_LookUp.csv",
apts_09 = "aptcomplex_extr_2009.txt",
resbldgs_09 = "resbldg_extr_2009.txt",
condo_complex_09 = "condocomplex_extr_2009.txt",
condo_units_09 = "condounit_extr_2009.txt",
comm_bldg_section_09 = "commbldgsection_extr_2009.txt",
parcels_09 = "parcel_extr_2009.txt",
look_up_09 = "lookup_extr_2009.txt")
# formats list of id files
id_dfs <- list() # initiate empty list
for(id_file in id_files) {
df <- read.csv(file.path(inputs_data_dir, id_file))
names(df) <- tolower(names(df)) # set column names to lowercase
# id_dfs[[i]] <- df # Option 1: store file in list
id_dfs[[names(which(id_files == id_file))]] <- df # Option 2: store file in list with names for each element
}
# formats list of building files
bldg_dfs <- list()
for(b in bldg_files) {
element_name <- names(which(bldg_files == b))
if(element_name %in% c('apts','resbldgs','condo_complex','condo_units','comm_bldg','comm_bldg_section','parcels','unit_breakdown','look_up')) {
dir <- current_data_dir
} else if(element_name %in% c('apts_09','resbldg_09','condo_complex_09','condo_units_09','comm_bldg_section_09','parcels_09','look_up_09')) {
dir <- base_data_dir
}
df <- read.csv(file.path(dir, b))
names(df) <- tolower(names(df)) # lowercase columns
if(element_name %in% c('look_up','look_up_09')) {
bldg_dfs[[element_name]] <- df
next
}
if (element_name %in% c('condo_complex','condo_complex_09')) {
df$minor <- "0000"
} else df$minor <- str_pad(df$minor, 4, pad = 0)
df$major <- str_pad(df$major, 6, pad = 0) # padding
df$pin <- paste(df$major, df$minor, sep="")
bldg_dfs[[element_name]] <- df
}
# Select residential buildings built 2010 and after
bldg_dfs[['resbldgs']] <- filter(bldg_dfs[['resbldgs']], yrbuilt >= 2010)
bldg_dfs[['resbldgs']]$table = "resbldg"
bldg_dfs[['apts']] <- filter(bldg_dfs[['apts']], yrbuilt >= 2010)
bldg_dfs[['apts']]$table = "apts"
bldg_dfs[['condo_complex']] <- filter(bldg_dfs[['condo_complex']], yrbuilt >= 2010)
bldg_dfs[['condo_complex']]$table = "condo_complex"
# Change column name in ResBldg table to be consistent with apt/condo tables
bldg_dfs[['resbldgs']]$nbrunits <- bldg_dfs[['resbldgs']]$nbrlivingunits
# Summarize residential/commercial buildings by Parcel to remove duplicate pins
bldg_dfs[['resbldgs']] <- bldg_dfs[['resbldgs']] %>%
group_by(pin) %>%
summarise(nbrunits=sum(nbrunits),nbrbldgs=NROW(pin),yrbuilt=max(yrbuilt),yrrenovated=min(yrrenovated),address=first(address),zipcode=first(zipcode),table="resbldg")
bldg_dfs[['comm_bldg']] <- bldg_dfs[['comm_bldg']] %>%
group_by(pin )%>%
summarise(nbrbldgs=NROW(pin),yrbuilt=max(yrbuilt),address=first(address),zipcode=first(zipcode),Table="Commercial")
# Remove commercial-only condo complexes and denotes any complex type that is a mobile home or floating home
bldg_dfs[['condo_complex']] <- filter(bldg_dfs[['condo_complex']],!complextype %in% c(3,8)) %>%
mutate(mh_fm=case_when(complextype %in% c(6,7)~'yes'))
## Looks at the "Use" field in the commercial building section table to classify apartment complexes as 'residential','group quarters', or 'other'
# filter commercial building data frame for two columns
sec_use <- bldg_dfs[['comm_bldg_section']] %>%
select(pin, sectionuse)
# create joined data frame
sec_use_apts <- left_join(bldg_dfs[['apts']], sec_use, by = 'pin')
# section uses by group
res <- c(300,984,352,348,351,459)
gq <- c(982,321,324,424,451,710,589,551,313,335)
# create new intermediate column 'unit_category' and apply criteria with case_when().
# result is one-to-many table
df_code <- sec_use_apts %>%
select(pin, complexdescr, sectionuse) %>%
mutate(unit_category = case_when(sectionuse %in% res ~ 'Residential',
sectionuse %in% gq ~ 'Group Quarters',
TRUE ~ 'Other')) %>%
mutate(unit_bin = case_when(unit_category == 'Residential' ~ 100,
unit_category == 'Group Quarters' ~ 1))
# group by pin and Complex Name. Sum of numbers will determine label
df_cat <- df_code %>%
drop_na(unit_bin) %>%
group_by(pin, complexdescr) %>%
summarise(sum_unit_bin = sum(unit_bin))
# final one-to-one table, apply labels
bldg_dfs[['apts']] <- bldg_dfs[['apts']] %>%
left_join(df_cat, by = c('pin', 'complexdescr')) %>%
mutate(complex_category = case_when(sum_unit_bin >= 100 ~ 'Residential',
sum_unit_bin < 100 ~ 'Group Quarters',
is.na(sum_unit_bin) ~ 'Other'))
# Present Use codes found in look up table
present_use <- filter(bldg_dfs[['look_up']],lutype==102)
# Merges residential records into a single table, selects key fields, and removed group quarter/non-res complexes
current_res_merge <- merge(bldg_dfs[['resbldgs']], bldg_dfs[['apts']], all=TRUE) %>%
merge(bldg_dfs[['condo_complex']], all=TRUE) %>%
left_join(bldg_dfs[['parcels']], by ='pin') %>%
left_join(present_use, by = c('presentuse' = 'luitem')) %>%
select(pin, yrbuilt,nbrbldgs, nbrunits, complex_category, address, zipcode, table, districtname, ludescription) %>%
filter(!complex_category %in% c('Group Quarters','Other')) %>%
filter(nbrunits >0)
-----------------------------------------------------------------------------------------------------------------------------------------------------------
#2009 Base Year Processing
# Add column specifying the table source
bldg_dfs[['resbldgs_09']]$table = "resbldg"
bldg_dfs[['apts_09']]$table = "apts"
bldg_dfs[['condo_complex_09']]$table = "condo complex"
# Summarize condo complex buildings by Parcel to remove duplicate pins
bldg_dfs[['condo_complex_09']] <- bldg_dfs[['condo_complex_09']] %>%
group_by(pin) %>%
summarise(nbrunits=sum(nbrunits),nbrbldgs=sum(nbrbldgs),yrbuilt=max(yrbuilt),complex_type=first(complextype),address=first(situsaddress),zipcode=first(zipcode),table=first(table))
# Summarize residential buildings by Parcel to remove duplicate pins
bldg_dfs[['resbldgs_09']] <- bldg_dfs[['resbldgs_09']] %>%
group_by(pin) %>%
summarise(nbrunits=sum(nbrlivingunits),nbrbldgs=NROW(pin),yrbuilt=max(yrbuilt),address=first(situsaddress),zipcode=first(zipcode),table=first(table))
# Remove commercial-only condo complexes and denotes any complex type that is a mobile home or floating home
bldg_dfs[['condo_complex_09']] <- filter(bldg_dfs[['condo_complex_09']],!complex_type %in% c(3,8)) %>%
mutate(MH_FH=case_when(complex_type %in% c(6,7)~'Yes'))
## Looks at the "Use" field in the commercial building section table to classify apartment complexes as 'residential'or 'group quarters'
# filter commercial building data frame for two columns
sec_use_09 <- bldg_dfs[['comm_bldg_section_09']] %>%
select(pin, sectionuse)
# create joined data frame
sec_use_apts_09 <- left_join(bldg_dfs[['apts_09']], sec_use_09, by = 'pin')
# section uses by group
res_09 <- c(300,348,352,551,459)
gq_09 <- c(321,323,324,335,424,451,313)
# create new intermediate column 'unit_category' and apply criteria with case_when().
# result is one-to-many table
df_code_09 <- sec_use_apts_09 %>%
select(pin, description, sectionuse) %>%
mutate(unit_category = case_when(sectionuse %in% res_09 ~ 'Residential',
sectionuse %in% gq_09 ~ 'Group Quarters',
TRUE ~ 'Other')) %>%
mutate(unit_bin = case_when(unit_category == 'Residential' ~ 100,
unit_category == 'Group Quarters' ~ 1))
# group by pin and Complex Name. Sum of numbers will determine label
df_cat_09 <- df_code_09 %>%
drop_na(unit_bin) %>%
group_by(pin, description) %>%
summarise(sum_unit_bin = sum(unit_bin))
# final one-to-one table, apply labels
bldg_dfs[['apts_09']] <- bldg_dfs[['apts_09']] %>%
left_join(df_cat_09, by = c('pin', 'description')) %>%
mutate(complex_category = case_when(sum_unit_bin >= 100 ~ 'Residential',
sum_unit_bin < 100 ~ 'Group Quarters',
is.na(sum_unit_bin) ~ 'Residential'))
# Filter out un-needed columns from apt complex table and change names to be consistent with other tables
bldg_dfs[['apts_09']] <- bldg_dfs[['apts_09']] %>%
summarise(pin=pin,nbrbldgs=numbldgs,yrbuilt=yrbuilt,nbrunits=numunits,address=situsaddress,table=table,complex_category=complex_category)
# Present Use codes found in look up table
present_use_09 <- filter(bldg_dfs[['look_up_09']],lutype==102)
# Changes 'present use' field to integer to match 'luitem' field for join
bldg_dfs[['parcels_09']]$presentuse <- as.integer(bldg_dfs[['parcels_09']]$presentuse)
# Merges resbldg/apt/condo records and removes pins in apts table that are also found in ResBldg table (ResBldg pins were built more recently)
base_res_merge <- merge(bldg_dfs[['resbldgs_09']],bldg_dfs[['apts_09']],all=TRUE) %>%
merge(bldg_dfs[['condo_complex_09']],all=TRUE) %>%
arrange(pin,desc(table)) %>%
filter(duplicated(pin) == FALSE) %>%
left_join(bldg_dfs[['parcels_09']], by ='pin') %>%
left_join(present_use_09, by = c('presentuse' = 'luitem')) %>%
select(pin, nbrbldgs, nbrunits, yrbuilt, table, ludescription, complex_category) %>%
rename("pin_09" = "pin", "nbrbldgs_09" = "nbrbldgs", "nbrunits_09" = "nbrunits", "yrbuilt_09" = "yrbuilt", "table_09" = "table", "ludescription_09" = "ludescription", "complex_category_09" = "complex_category") %>%
filter(!complex_category_09 %in% c('Group Quarters','Other'))
-----------------------------------------------------------------------------------------------------------------------------------------------------------
# Joining current year records to base year records and tabulate net change summaries
# Determines which pins from the current year records are found in the base year records and populates a new "Join_Method" column with "Table"
joined_pins <- merge(current_res_merge,base_res_merge,by.x="pin",by.y="pin_09",all=FALSE) %>%
select("pin") %>%
rename("pin_join"="pin")
joined_pins$join_method <- "table"
current_res_merge <- merge(current_res_merge,joined_pins,by.x="pin",by.y="pin_join",all=TRUE)
current_res_merge$join_method[is.na(current_res_merge$join_method)] <- "spatial join"
id_dfs[['pin_translation']]$pin_2009 <- as.character(id_dfs[['pin_translation']]$pin_2009)
id_dfs[['pin_translation']]$pin <- as.character(id_dfs[['pin_translation']]$pin)
# Joins GIS pin translation table to the current records and populates pin_2009 field
current_res_merge <- current_res_merge %>%
left_join(select(id_dfs[['pin_translation']],pin,pin_2009),by=c("pin"))
current_res_merge$pin_2009[current_res_merge$join_method=='table'] <- current_res_merge$pin[current_res_merge$join_method=='table']
# Joins base record attributes to current records and cleans up columns in output
base_current_join <- left_join(current_res_merge,base_res_merge,by=c("pin_2009"="pin_09")) %>%
rename("presentuse"="ludescription","presentuse_09"="ludescription_09")
# Summarizes number of occurrences of a base pin in the final table
base_pin_count <- base_current_join %>%
group_by(pin_2009) %>%
summarise(base_pins = n()) %>%
na.omit()
# Joins number of occurrences of base pin field to the final table
base_current_join <- left_join(base_current_join,base_pin_count,by = 'pin_2009')
# Assigns activity type categories by comparing current year records against base year records
base_current_join$development[base_current_join$nbrunits_09==0 | is.na(base_current_join$yrbuilt_09)] <- "new development"
base_current_join$development[base_current_join$nbrunits == base_current_join$nbrunits_09 & is.na(base_current_join$development) & base_current_join$base_pins == 1] <- "rebuild or remodel"
base_current_join$development[base_current_join$nbrunits != base_current_join$nbrunits_09 & is.na(base_current_join$development) | is.na(base_current_join$development) & base_current_join$base_pins >1] <- "redevelopment"
# Tags demolition records based on activity type
base_current_join$demolition[base_current_join$development=="redevelopment"] <- 1
base_current_join$demolition[base_current_join$development=="new development"] <- 0
base_current_join$demolition[base_current_join$development=="rebuild or remodel"] <- 1
# Creates units per building column
base_current_join$units_per_bldg <- round(base_current_join$nbrunits/base_current_join$nbrbldgs,digits=0)
base_current_join$units_per_bldg_09 <- round(base_current_join$nbrunits_09/base_current_join$nbrbldgs_09,digits=0)
# Updates 'presentuse' field with spaces removed in order to make it easier to query
base_current_join$presentuse <- str_remove_all(base_current_join$presentuse," ")
base_current_join$presentuse_09 <- str_remove_all(base_current_join$presentuse_09," ")
# Creates a new field denoting single family parcels as defined by the present use field
base_current_join$sf[base_current_join$presentuse %in% c("SingleFamily(C/IUse)","SingleFamily(C/IZone)","SingleFamily(ResUse/Zone)","Vacant(Single-family)")] <- 1
base_current_join$sf_09[base_current_join$presentuse_09 %in% c("SingleFamily(C/IUse)","SingleFamily(C/IZone)","SingleFamily(ResUse/Zone)","Vacant(Single-family)")] <- 1
# Assigns structure type
base_current_join$structure_type[base_current_join$units_per_bldg == 1|base_current_join$sf ==1] <- "single family detached"
base_current_join$structure_type[base_current_join$presentuse =="TownhousePlat"] <- "single family attached"
base_current_join$structure_type[(base_current_join$units_per_bldg >= 2 & base_current_join$units_per_bldg <= 4)] <- "multifamily 2-4 units"
base_current_join$structure_type[(base_current_join$units_per_bldg >= 5 & base_current_join$units_per_bldg <= 9)] <- "multifamily 5-9 units"
base_current_join$structure_type[(base_current_join$units_per_bldg >= 10 & base_current_join$units_per_bldg <= 19)] <- "multifamily 10-19 units"
base_current_join$structure_type[(base_current_join$units_per_bldg >= 20 & base_current_join$units_per_bldg <= 49)] <- "multifamily 20-49 units"
base_current_join$structure_type[(base_current_join$units_per_bldg >= 50)] <- "multifamily 50+ units"
base_current_join$structure_type[base_current_join$presentuse =="MobileHome"] <- "mobile homes"
base_current_join$structure_type_09[base_current_join$units_per_bldg_09 == 1|base_current_join$sf_09 ==1] <- "single family detached"
base_current_join$structure_type_09[base_current_join$presentuse_09 =="TownhousePlat"] <- "single family attached"
base_current_join$structure_type_09[(base_current_join$units_per_bldg_09 >= 2 & base_current_join$units_per_bldg_09 <= 4)] <- "multifamily 2-4 units"
base_current_join$structure_type_09[(base_current_join$units_per_bldg_09 >= 5 & base_current_join$units_per_bldg_09 <= 9)] <- "multifamily 5-9 units"
base_current_join$structure_type_09[(base_current_join$units_per_bldg_09 >= 10 & base_current_join$units_per_bldg_09 <= 19)] <- "multifamily 10-19 units"
base_current_join$structure_type_09[(base_current_join$units_per_bldg_09 >= 20 & base_current_join$units_per_bldg_09 <= 49)] <- "multifamily 20-49 units"
base_current_join$structure_type_09[(base_current_join$units_per_bldg_09 >= 50)] <- "multifamily 50+ units"
base_current_join$structure_type_09[base_current_join$presentuse_09 =="MobileHome"] <- "mobile homes"
# Sets demolitions to negative numbers
base_current_join$demo_units[base_current_join$demolition==1] <- base_current_join$nbrunits_09[base_current_join$demolition==1]*(-1)
base_current_join$demo_units[base_current_join$demolition!=1] <- 0
# Changes Tacoma records to Federal Way to fix GIS boundary issue
id_dfs[['city_tract']]$juris[id_dfs[['city_tract']]$juris == 'Tacoma'] <- "Federal Way"
# Adds city/tract fields and filters for relevant years in time series
base_current_join <- base_current_join %>%
left_join(id_dfs[['city_tract']],by='pin') %>%
filter(yrbuilt %in% c(2010:2023)) %>%
mutate(juris = ifelse(is.na(juris),'Z-Missing',juris)) %>%
rename("objectid" = "objectid_1")
# If a record does not have a jurisdiction name it show up as 'Z-Missing' in the summary tables and need to be fixed
base_current_join$districtname <- str_to_title(base_current_join$districtname)
base_current_join$juris[base_current_join$juris == 'Z-Missing'] <- base_current_join$districtname[base_current_join$juris == 'Z-Missing']
base_current_join$juris[base_current_join$juris == 'Seatac'] <- 'SeaTac'
# Reclassifies certain developments that need to be corrected (manual review of the highest demolition counts is needed as some of them are not actually demolitions)
base_current_join$demolition[base_current_join$pin_2009 == '1978200470'] <- 0
base_current_join$development[base_current_join$pin_2009 == '1978200470'] <- "new development"
base_current_join$demolition[base_current_join$pin_2009 == '0623049257'] <- 0
base_current_join$development[base_current_join$pin_2009 == '0623049257'] <- "new development"
base_current_join$demolition[base_current_join$pin_2009 == '2354600000'] <- 0
base_current_join$development[base_current_join$pin_2009 == '2354600000'] <- "new development"
base_current_join$demolition[base_current_join$pin_2009 == '7954000005'] <- 0
base_current_join$development[base_current_join$pin_2009 == '7954000005'] <- "new development"
base_current_join$demolition[base_current_join$pin_2009 == '1926049216'] <- 0
base_current_join$development[base_current_join$pin_2009 == '1926049216'] <- "new development"
base_current_join$demolition[base_current_join$pin_2009 == '3388360000'] <- 0
base_current_join$development[base_current_join$pin_2009 == '3388360000'] <- "new development"
base_current_join$demolition[base_current_join$pin_2009 == '8663270025'] <- 0
base_current_join$development[base_current_join$pin_2009 == '8663270025'] <- "new development"
# Creates a demolitions table that removes the duplication found in the joined current-base table
demos <- base_current_join %>%
filter(demolition==1) %>%
distinct(pin_2009,.keep_all=TRUE) %>%
mutate(development = 'demolition')
# Edits/additions to data based on supplementary data obtained from OFM related to mobile home park openings/closures
base_current_join$development[base_current_join$pin %in% c('2724201800','1620400190','1620400180','1620400170','1620400160','1620400150',
'1620400140','1620400130','1620400120','1620400110','1620400100','1620400090','1620400080','1620400070','1620400060','1620400050',
'1620400040','1620400030','1620400020','1620400010')] <- 'redevelopment'
base_current_join$structure_type_09[base_current_join$pin == '9516100050'] <- 'mobile homes'
demos$structure_type_09[demos$pin == '9516100010'] <- 'mobile homes'
demos <- rbind(demos,id_dfs[["mobile_home_park_closures"]])
base_current_join <- rbind(base_current_join,id_dfs[["mobile_home_park_openings"]])
## Creates functions to summarize the net change estimates by county total, jurisdiction, and census tract
# These functions format the final tables and any missing cities/tracts that don't have data
format_cities <- function(x) {
x %>%
full_join(id_dfs[['full_city_list']],by='juris') %>%
replace(is.na(.), 0) %>%
arrange(juris)
}
format_tracts <- function(x) {
x %>%
full_join(id_dfs[['full_tract_list']],by='geoid20') %>%
replace(is.na(.), 0) %>%
arrange(geoid20)
}
# Creates final net change summaries by county/jurisdiction/tract
#total
new_total <- base_current_join %>%
group_by(structure_type,yrbuilt) %>%
rename(str_type=structure_type) %>%
summarise(new_units=sum(nbrunits))
lost_total <- demos %>%
group_by(structure_type_09,yrbuilt) %>%
rename(str_type=structure_type_09) %>%
summarise(lost_units=sum(demo_units))
total_net_summary <- full_join(new_total, lost_total, by = join_by("yrbuilt", "str_type")) %>%
replace_na(list(new_units = 0, lost_units = 0)) %>%
mutate(net_units = new_units + lost_units,
str_type = factor(str_type,
levels = c("single family detached",
"single family attached",
"multifamily 2-4 units",
"multifamily 5-9 units",
"multifamily 10-19 units",
"multifamily 20-49 units",
"multifamily 50+ units",
"mobile homes"))) %>%
pivot_wider(id_cols = c(yrbuilt),
names_from = str_type,
names_sort = TRUE,
values_from = net_units,
values_fill = 0) %>%
mutate(net_total = rowSums(across(where(is.numeric) & !yrbuilt), na.rm = TRUE), .before = `single family detached`) %>%
arrange(yrbuilt)
#city
new_city <- base_current_join %>%
group_by(juris,structure_type,yrbuilt) %>%
rename(str_type=structure_type) %>%
summarise(new_units=sum(nbrunits))
lost_city <- demos %>%
group_by(juris,structure_type_09,yrbuilt) %>%
rename(str_type=structure_type_09) %>%
summarise(lost_units=sum(demo_units))
city_net_summary <- full_join(new_city, lost_city, by = join_by("juris","yrbuilt", "str_type")) %>%
replace_na(list(new_units = 0, lost_units = 0)) %>%
mutate(net_units = new_units + lost_units,
str_type = factor(str_type,
levels = c("single family detached",
"single family attached",
"multifamily 2-4 units",
"multifamily 5-9 units",
"multifamily 10-19 units",
"multifamily 20-49 units",
"multifamily 50+ units",
"mobile homes"))) %>%
pivot_wider(id_cols = c(yrbuilt,juris),
names_from = str_type,
names_sort = TRUE,
values_from = net_units,
values_fill = 0) %>%
mutate(net_total = rowSums(across(where(is.numeric) & !yrbuilt), na.rm = TRUE), .before = `single family detached`) %>%
group_by(yrbuilt) %>%
group_modify(~ format_cities(.x)) %>%
ungroup()
#tract
new_tract <- base_current_join %>%
group_by(geoid20,structure_type,yrbuilt) %>%
rename(str_type=structure_type) %>%
summarise(new_units=sum(nbrunits))
lost_tract <- demos %>%
group_by(geoid20,structure_type_09,yrbuilt) %>%
rename(str_type=structure_type_09) %>%
summarise(lost_units=sum(demo_units))
tract_net_summary <- full_join(new_tract, lost_tract, by = join_by("geoid20","yrbuilt", "str_type")) %>%
replace_na(list(new_units = 0, lost_units = 0)) %>%
mutate(net_units = new_units + lost_units,
str_type = factor(str_type,
levels = c("single family detached",
"single family attached",
"multifamily 2-4 units",
"multifamily 5-9 units",
"multifamily 10-19 units",
"multifamily 20-49 units",
"multifamily 50+ units",
"mobile homes"))) %>%
pivot_wider(id_cols = c(yrbuilt,geoid20),
names_from = str_type,
names_sort = TRUE,
values_from = net_units,
values_fill = 0) %>%
mutate(net_total = rowSums(across(where(is.numeric) & !yrbuilt), na.rm = TRUE), .before = `single family detached`) %>%
group_by(yrbuilt) %>%
group_modify(~ format_tracts(.x)) %>%
ungroup()
# Creates final parcel table
new_unit_parcel_records <- base_current_join %>%
mutate(project_year = 2024) %>%
mutate(county = "King") %>%
mutate(county_fips = "033") %>%
select(project_year,
pin,
year = yrbuilt,
units = nbrunits,
buildings = nbrbldgs,
structure_type,
development,
jurisdiction = juris,
geoid20,
county,
county_fips,
x_coord,
y_coord)
lost_unit_parcel_records <- demos %>%
mutate(project_year = 2024) %>%
mutate(county = "King") %>%
mutate(county_fips = "033") %>%
select(project_year,
pin,
year = yrbuilt,
units = demo_units,
buildings = nbrbldgs_09,
structure_type = structure_type_09,
development,
jurisdiction = juris,
geoid20,
county,
county_fips,
x_coord,
y_coord)
king_parcel_tbl <- rbind(new_unit_parcel_records,lost_unit_parcel_records)
# Creates elmer-ready summary tables
king_county_units_long <- total_net_summary %>%
pivot_longer(cols = 'net_total':'mobile homes',
names_to = "structure_type",
values_to = "net_units") %>%
mutate(project_year = 2024,
county = "King") %>%
select(project_year, county, year = yrbuilt, structure_type, net_units)
king_juris_units_long <- city_net_summary %>%
pivot_longer(cols = 'net_total':'mobile homes',
names_to = "structure_type",
values_to = "net_units") %>%
mutate(project_year = 2024,
county = "King") %>%
select(project_year, county, juris, year = yrbuilt, structure_type, net_units)
king_tract_units_long <- tract_net_summary %>%
pivot_longer(cols = 'net_total':'mobile homes',
names_to = "structure_type",
values_to = "net_units") %>%
mutate(project_year = 2024,
county = "King") %>%
select(project_year, county, tract = geoid20, year = yrbuilt, structure_type, net_units)
# Write to xlsx
file_name_county <- paste0("king_unit_estimates_county_", format(Sys.Date(), "%Y%m%d"), ".xlsx")
file_name_juris <- paste0("king_unit_estimates_juris_", format(Sys.Date(), "%Y%m%d"), ".xlsx")
file_name_tract <- paste0("king_unit_estimates_tract20_", format(Sys.Date(), "%Y%m%d"), ".xlsx")
file_name_parcel <- paste0("king_unit_estimates_parcel_", format(Sys.Date(), "%Y%m%d"), ".xlsx")
write_xlsx(x = total_net_summary, path = paste0(outputs_data_dir, file_name_county))
write_xlsx(x = split(city_net_summary, city_net_summary$yrbuilt) %>% map(., ~ (.x %>% select(-yrbuilt))),
path = paste0(outputs_data_dir, file_name_juris))
write_xlsx(x = split(tract_net_summary, tract_net_summary$yrbuilt) %>% map(., ~ (.x %>% select(-yrbuilt))),
path = paste0(outputs_data_dir, file_name_tract))
write_xlsx(x = king_parcel_tbl, path = paste0(outputs_data_dir, file_name_parcel))
# save tables to .rda for combining script
save(king_parcel_tbl, king_county_units_long, king_juris_units_long, king_tract_units_long,
file = "J:/Projects/Assessor/assessor_permit/data_products/2024/elmer/king_tables.rda")