forked from zdevito/ATen
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Type.h
974 lines (948 loc) · 88.7 KB
/
Type.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
#pragma once
#include <memory>
#include <limits>
#include "ATen/ArrayRef.h"
#include "ATen/Half.h"
#include "ATen/SparseTensorRef.h"
namespace at {
class Context;
struct Storage;
struct Tensor;
class Scalar;
struct Generator;
#define AT_FORALL_SCALAR_TYPES(_) \
_(uint8_t,Byte,i) \
_(int8_t,Char,i) \
_(double,Double,d) \
_(float,Float,d) \
_(int,Int,i) \
_(int64_t,Long,i) \
_(int16_t,Short,i) \
_(Half,Half,d)
enum class ScalarType {
#define DEFINE_ENUM(_1,n,_2) \
n,
AT_FORALL_SCALAR_TYPES(DEFINE_ENUM)
#undef DEFINE_ENUM
NumOptions
};
enum class Backend {
CPU,
CUDA,
SparseCPU,
SparseCUDA,
NumOptions
};
constexpr Backend kCPU = Backend::CPU;
constexpr Backend kCUDA = Backend::CUDA;
constexpr Backend kSparseCPU = Backend::SparseCPU;
constexpr Backend kSparseCUDA = Backend::SparseCUDA;
// Note [Undefined-dim versus 0-dim]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Unlike Torch, ATen treats zero-dimension tensors as having ONE
// element (that is to say, a zero-dimensional tensor is a scalar!)
// This is in contrast to Torch, where a zero-dimension tensor has
// zero elements.
//
// Because we are backed by Torch tensors, we need to be able to
// represent this state (of numel==0). kUndefinedDimensions represents this
// situation.
constexpr int64_t kUndefinedDimensions = std::numeric_limits<int64_t>::min();
static inline const char * toString(Backend b) {
switch(b) {
case Backend::CPU: return "CPU";
case Backend::CUDA: return "CUDA";
case Backend::SparseCPU: return "SparseCPU";
case Backend::SparseCUDA: return "SparseCUDA";
default: return "UNKNOWN_BACKEND";
}
}
#define DEFINE_CONSTANT(_,name,_2) \
constexpr ScalarType k##name = ScalarType::name;
AT_FORALL_SCALAR_TYPES(DEFINE_CONSTANT)
#undef DEFINE_CONSTANT
static inline const char * toString(ScalarType t) {
#define DEFINE_CASE(_,name,_2) \
case ScalarType:: name : return #name;
switch(t) {
AT_FORALL_SCALAR_TYPES(DEFINE_CASE)
default:
return "UNKNOWN_SCALAR_TYPE";
}
#undef DEFINE_CASE
}
enum class TypeID {
CPUByte,
CPUChar,
CPUDouble,
CPUFloat,
CPUInt,
CPULong,
CPUShort,
CPUHalf,
SparseCPUByte,
SparseCPUChar,
SparseCPUDouble,
SparseCPUFloat,
SparseCPUInt,
SparseCPULong,
SparseCPUShort,
CUDAByte,
CUDAChar,
CUDADouble,
CUDAFloat,
CUDAInt,
CUDALong,
CUDAShort,
CUDAHalf,
SparseCUDAByte,
SparseCUDAChar,
SparseCUDADouble,
SparseCUDAFloat,
SparseCUDAInt,
SparseCUDALong,
SparseCUDAShort,
NumOptions
};
typedef ArrayRef<int64_t> IntList;
typedef ArrayRef<Tensor> TensorList;
struct Type {
explicit Type(Context * context)
: context(context) {}
virtual ~Type() {}
virtual ScalarType scalarType() = 0;
virtual Backend backend() = 0;
virtual bool isCuda() = 0;
virtual bool isSparse() = 0;
virtual bool isDistributed() = 0;
static void registerAll(Context * context);
virtual std::unique_ptr<Storage> storage() = 0;
virtual std::unique_ptr<Storage> storage(size_t size) = 0;
virtual std::unique_ptr<Storage> storageFromBlob(void * data, int64_t size) = 0;
virtual std::unique_ptr<Generator> generator() = 0;
virtual Tensor unsafeTensorFromTH(void * th_pointer, bool retain) = 0;
virtual const char * toString() const = 0;
Type & toBackend(Backend b);
Type & toScalarType(ScalarType s);
// contingious IDs for all types in the system
// for external dispatch
virtual TypeID ID() const = 0;
virtual void copy(const Tensor & src, Tensor & dst) = 0;
Tensor copy(const Tensor & src);
Tensor tensorFromBlob(void * data, IntList sizes);
Tensor tensorFromBlob(void * data, IntList sizes, IntList strides);
Tensor scalarTensor(Scalar s);
bool operator==(const Type& other) const;
// example
// virtual Tensor * add(Tensor & a, Tensor & b) = 0;
virtual int64_t m_storage_offset(const Tensor & self) ;
virtual Tensor & m_resize_(Tensor & self, IntList size) ;
virtual Tensor & zeros_out(IntList size, Tensor & result) ;
virtual Tensor zeros(IntList size) ;
virtual Tensor & ones_out(IntList size, Tensor & result) ;
virtual Tensor ones(IntList size) ;
virtual int64_t numel(const Tensor & self) ;
virtual Tensor & m_set_(Tensor & self, Storage & storage) ;
virtual Tensor & m_set_(Tensor & self, Storage & sourceStorage, int64_t storage_offset, IntList size, IntList stride) ;
virtual Tensor & m_set_(Tensor & self, Storage & sourceStorage, int64_t storage_offset, IntList size) ;
virtual Tensor & m_set_(Tensor & self, const Tensor & source) ;
virtual Tensor & m_set_(Tensor & self) ;
virtual Tensor & m_fill_(Tensor & self, Scalar value) ;
virtual bool m_is_same_size(const Tensor & self, const Tensor & other) ;
virtual bool m_is_contiguous(const Tensor & self) ;
virtual bool m_is_set_to(const Tensor & self, const Tensor & tensor) ;
virtual Tensor & m_masked_fill_(Tensor & self, const Tensor & mask, Scalar value) ;
virtual Tensor & m_masked_scatter_(Tensor & self, const Tensor & mask, const Tensor & source) ;
virtual Tensor & masked_select_out(const Tensor & self, const Tensor & mask, Tensor & result) ;
virtual Tensor masked_select(const Tensor & self, const Tensor & mask) ;
virtual Tensor transpose(const Tensor & self, int64_t dim0, int64_t dim1) ;
virtual Tensor & m_transpose_(Tensor & self, int64_t dim0, int64_t dim1) ;
virtual Tensor t(const Tensor & self) ;
virtual Tensor & m_t_(Tensor & self) ;
virtual Tensor & squeeze_out(const Tensor & self, int64_t dim, Tensor & result) ;
virtual Tensor squeeze(const Tensor & self, int64_t dim) ;
virtual Tensor & squeeze_out(const Tensor & self, Tensor & result) ;
virtual Tensor squeeze(const Tensor & self) ;
virtual Tensor & m_squeeze_(Tensor & self, int64_t dim) ;
virtual Tensor & m_squeeze_(Tensor & self) ;
virtual Tensor & unsqueeze_out(const Tensor & self, int64_t dim, Tensor & result) ;
virtual Tensor unsqueeze(const Tensor & self, int64_t dim) ;
virtual Tensor & m_unsqueeze_(Tensor & self, int64_t dim) ;
virtual Tensor & nonzero_out(const Tensor & self, Tensor & result) ;
virtual Tensor nonzero(const Tensor & self) ;
virtual Tensor m_contiguous(const Tensor & self) ;
virtual Tensor m_clone(const Tensor & self) ;
virtual Tensor m_view(const Tensor & self, IntList size) ;
virtual Tensor m_expand(const Tensor & self, IntList size) ;
virtual Tensor & m_resize_as_(Tensor & self, const Tensor & the_template) ;
virtual Tensor & index_select_out(const Tensor & self, int64_t dim, const Tensor & index, Tensor & result) ;
virtual Tensor index_select(const Tensor & self, int64_t dim, const Tensor & index) ;
virtual Tensor & m_index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) ;
virtual Tensor & m_index_add_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) ;
virtual Tensor & m_index_fill_(Tensor & self, int64_t dim, const Tensor & index, Scalar value) ;
virtual Tensor m_narrow(const Tensor & self, int64_t dimension, int64_t start, int64_t length) ;
virtual Tensor m_unfold(const Tensor & self, int64_t dimension, int64_t size, int64_t step) ;
virtual Tensor & range_out(Scalar start, Scalar end, Scalar step, Tensor & result) ;
virtual Tensor range(Scalar start, Scalar end, Scalar step) ;
virtual Tensor & range_out(Scalar start, Scalar end, Tensor & result) ;
virtual Tensor range(Scalar start, Scalar end) ;
virtual Tensor & m_scatter_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) ;
virtual Tensor & m_scatter_(Tensor & self, int64_t dim, const Tensor & index, Scalar value) ;
virtual Tensor & m_scatter_add_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) ;
virtual Tensor & gather_out(const Tensor & self, int64_t dim, const Tensor & index, Tensor & result) ;
virtual Tensor gather(const Tensor & self, int64_t dim, const Tensor & index) ;
virtual void* m_data_ptr(const Tensor & self) ;
virtual bool equal(const Tensor & self, const Tensor & other) ;
virtual Tensor & __and___out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor __and__(const Tensor & self, Scalar value) ;
virtual Tensor & __and___out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor __and__(const Tensor & self, const Tensor & other) ;
virtual Tensor & __iand__(Tensor & self, Scalar value) ;
virtual Tensor & __iand__(Tensor & self, const Tensor & other) ;
virtual Tensor & __or___out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor __or__(const Tensor & self, Scalar value) ;
virtual Tensor & __or___out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor __or__(const Tensor & self, const Tensor & other) ;
virtual Tensor & __ior__(Tensor & self, Scalar value) ;
virtual Tensor & __ior__(Tensor & self, const Tensor & other) ;
virtual Tensor & __xor___out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor __xor__(const Tensor & self, Scalar value) ;
virtual Tensor & __xor___out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor __xor__(const Tensor & self, const Tensor & other) ;
virtual Tensor & __ixor__(Tensor & self, Scalar value) ;
virtual Tensor & __ixor__(Tensor & self, const Tensor & other) ;
virtual Tensor & __lshift___out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor __lshift__(const Tensor & self, Scalar value) ;
virtual Tensor & __lshift___out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor __lshift__(const Tensor & self, const Tensor & other) ;
virtual Tensor & __ilshift__(Tensor & self, Scalar value) ;
virtual Tensor & __ilshift__(Tensor & self, const Tensor & other) ;
virtual Tensor & __rshift___out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor __rshift__(const Tensor & self, Scalar value) ;
virtual Tensor & __rshift___out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor __rshift__(const Tensor & self, const Tensor & other) ;
virtual Tensor & __irshift__(Tensor & self, Scalar value) ;
virtual Tensor & __irshift__(Tensor & self, const Tensor & other) ;
virtual Tensor m_lt(const Tensor & self, Scalar value) ;
virtual Tensor m_lt(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_lt_(Tensor & self, Scalar value) ;
virtual Tensor & m_lt_(Tensor & self, const Tensor & other) ;
virtual Tensor & lt_out(const Tensor & tensor, Scalar value, Tensor & result) ;
virtual Tensor lt(const Tensor & tensor, Scalar value) ;
virtual Tensor & lt_out(const Tensor & tensor, const Tensor & other, Tensor & result) ;
virtual Tensor lt(const Tensor & tensor, const Tensor & other) ;
virtual Tensor m_gt(const Tensor & self, Scalar value) ;
virtual Tensor m_gt(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_gt_(Tensor & self, Scalar value) ;
virtual Tensor & m_gt_(Tensor & self, const Tensor & other) ;
virtual Tensor & gt_out(const Tensor & tensor, Scalar value, Tensor & result) ;
virtual Tensor gt(const Tensor & tensor, Scalar value) ;
virtual Tensor & gt_out(const Tensor & tensor, const Tensor & other, Tensor & result) ;
virtual Tensor gt(const Tensor & tensor, const Tensor & other) ;
virtual Tensor m_le(const Tensor & self, Scalar value) ;
virtual Tensor m_le(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_le_(Tensor & self, Scalar value) ;
virtual Tensor & m_le_(Tensor & self, const Tensor & other) ;
virtual Tensor & le_out(const Tensor & tensor, Scalar value, Tensor & result) ;
virtual Tensor le(const Tensor & tensor, Scalar value) ;
virtual Tensor & le_out(const Tensor & tensor, const Tensor & other, Tensor & result) ;
virtual Tensor le(const Tensor & tensor, const Tensor & other) ;
virtual Tensor m_ge(const Tensor & self, Scalar value) ;
virtual Tensor m_ge(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_ge_(Tensor & self, Scalar value) ;
virtual Tensor & m_ge_(Tensor & self, const Tensor & other) ;
virtual Tensor & ge_out(const Tensor & tensor, Scalar value, Tensor & result) ;
virtual Tensor ge(const Tensor & tensor, Scalar value) ;
virtual Tensor & ge_out(const Tensor & tensor, const Tensor & other, Tensor & result) ;
virtual Tensor ge(const Tensor & tensor, const Tensor & other) ;
virtual Tensor m_eq(const Tensor & self, Scalar value) ;
virtual Tensor m_eq(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_eq_(Tensor & self, Scalar value) ;
virtual Tensor & m_eq_(Tensor & self, const Tensor & other) ;
virtual Tensor & eq_out(const Tensor & tensor, Scalar value, Tensor & result) ;
virtual Tensor eq(const Tensor & tensor, Scalar value) ;
virtual Tensor & eq_out(const Tensor & tensor, const Tensor & other, Tensor & result) ;
virtual Tensor eq(const Tensor & tensor, const Tensor & other) ;
virtual Tensor m_ne(const Tensor & self, Scalar value) ;
virtual Tensor m_ne(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_ne_(Tensor & self, Scalar value) ;
virtual Tensor & m_ne_(Tensor & self, const Tensor & other) ;
virtual Tensor & ne_out(const Tensor & tensor, Scalar value, Tensor & result) ;
virtual Tensor ne(const Tensor & tensor, Scalar value) ;
virtual Tensor & ne_out(const Tensor & tensor, const Tensor & other, Tensor & result) ;
virtual Tensor ne(const Tensor & tensor, const Tensor & other) ;
virtual std::tuple<Tensor &,Tensor &> min_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & min, Tensor & min_indices) ;
virtual std::tuple<Tensor,Tensor> min(const Tensor & self, int64_t dim, bool keepdim) ;
virtual std::tuple<Tensor &,Tensor &> min_out(const Tensor & self, int64_t dim, Tensor & min, Tensor & min_indices) ;
virtual std::tuple<Tensor,Tensor> min(const Tensor & self, int64_t dim) ;
virtual Tensor & min_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor min(const Tensor & self, const Tensor & other) ;
virtual Scalar min(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> max_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & max, Tensor & max_indices) ;
virtual std::tuple<Tensor,Tensor> max(const Tensor & self, int64_t dim, bool keepdim) ;
virtual std::tuple<Tensor &,Tensor &> max_out(const Tensor & self, int64_t dim, Tensor & max, Tensor & max_indices) ;
virtual std::tuple<Tensor,Tensor> max(const Tensor & self, int64_t dim) ;
virtual Tensor & max_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor max(const Tensor & self, const Tensor & other) ;
virtual Scalar max(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> kthvalue_out(const Tensor & self, int64_t k, bool keepdim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k, bool keepdim) ;
virtual std::tuple<Tensor &,Tensor &> kthvalue_out(const Tensor & self, int64_t k, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k) ;
virtual std::tuple<Tensor &,Tensor &> kthvalue_out(const Tensor & self, int64_t k, int64_t dim, bool keepdim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k, int64_t dim, bool keepdim) ;
virtual std::tuple<Tensor &,Tensor &> kthvalue_out(const Tensor & self, int64_t k, int64_t dim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k, int64_t dim) ;
virtual std::tuple<Tensor &,Tensor &> mode_out(const Tensor & self, bool keepdim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> mode(const Tensor & self, bool keepdim) ;
virtual std::tuple<Tensor &,Tensor &> mode_out(const Tensor & self, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> mode(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> mode_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> mode(const Tensor & self, int64_t dim, bool keepdim) ;
virtual std::tuple<Tensor &,Tensor &> mode_out(const Tensor & self, int64_t dim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> mode(const Tensor & self, int64_t dim) ;
virtual std::tuple<Tensor &,Tensor &> median_out(const Tensor & self, bool keepdim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> median(const Tensor & self, bool keepdim) ;
virtual std::tuple<Tensor &,Tensor &> median_out(const Tensor & self, int64_t dim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> median(const Tensor & self, int64_t dim) ;
virtual std::tuple<Tensor &,Tensor &> median_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> median(const Tensor & self, int64_t dim, bool keepdim) ;
virtual Scalar median(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> sort_out(const Tensor & self, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> sort(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> sort_out(const Tensor & self, int64_t dim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> sort(const Tensor & self, int64_t dim) ;
virtual std::tuple<Tensor &,Tensor &> sort_out(const Tensor & self, int64_t dim, bool descending, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> sort(const Tensor & self, int64_t dim, bool descending) ;
virtual std::tuple<Tensor &,Tensor &> topk_out(const Tensor & self, int64_t k, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> topk(const Tensor & self, int64_t k) ;
virtual std::tuple<Tensor &,Tensor &> topk_out(const Tensor & self, int64_t k, int64_t dim, bool largest, bool sorted, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> topk(const Tensor & self, int64_t k, int64_t dim, bool largest, bool sorted) ;
virtual std::tuple<Tensor &,Tensor &> topk_out(const Tensor & self, int64_t k, int64_t dim, bool largest, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> topk(const Tensor & self, int64_t k, int64_t dim, bool largest) ;
virtual std::tuple<Tensor &,Tensor &> topk_out(const Tensor & self, int64_t k, int64_t dim, Tensor & values, Tensor & indices) ;
virtual std::tuple<Tensor,Tensor> topk(const Tensor & self, int64_t k, int64_t dim) ;
virtual bool m_all(const Tensor & self) ;
virtual bool m_any(const Tensor & self) ;
virtual int64_t m_get_device(const Tensor & self) ;
virtual Tensor & abs_out(const Tensor & self, Tensor & destination) ;
virtual Tensor abs(const Tensor & self) ;
virtual Tensor & m_abs_(Tensor & self) ;
virtual Tensor & m_sigmoid_(Tensor & self) ;
virtual Tensor & sigmoid_out(const Tensor & self, Tensor & result) ;
virtual Tensor sigmoid(const Tensor & self) ;
virtual Tensor & m_log_(Tensor & self) ;
virtual Tensor & log_out(const Tensor & self, Tensor & result) ;
virtual Tensor log(const Tensor & self) ;
virtual Tensor & m_log1p_(Tensor & self) ;
virtual Tensor & log1p_out(const Tensor & self, Tensor & result) ;
virtual Tensor log1p(const Tensor & self) ;
virtual Tensor & lgamma_out(const Tensor & self, Tensor & result) ;
virtual Tensor lgamma(const Tensor & self) ;
virtual Tensor & m_lgamma_(Tensor & self) ;
virtual Tensor & m_exp_(Tensor & self) ;
virtual Tensor & exp_out(const Tensor & self, Tensor & result) ;
virtual Tensor exp(const Tensor & self) ;
virtual Tensor & m_cos_(Tensor & self) ;
virtual Tensor & cos_out(const Tensor & self, Tensor & result) ;
virtual Tensor cos(const Tensor & self) ;
virtual Tensor & m_acos_(Tensor & self) ;
virtual Tensor & acos_out(const Tensor & self, Tensor & result) ;
virtual Tensor acos(const Tensor & self) ;
virtual Tensor & m_cosh_(Tensor & self) ;
virtual Tensor & cosh_out(const Tensor & self, Tensor & result) ;
virtual Tensor cosh(const Tensor & self) ;
virtual Tensor & m_sin_(Tensor & self) ;
virtual Tensor & sin_out(const Tensor & self, Tensor & result) ;
virtual Tensor sin(const Tensor & self) ;
virtual Tensor & m_asin_(Tensor & self) ;
virtual Tensor & asin_out(const Tensor & self, Tensor & result) ;
virtual Tensor asin(const Tensor & self) ;
virtual Tensor & m_sinh_(Tensor & self) ;
virtual Tensor & sinh_out(const Tensor & self, Tensor & result) ;
virtual Tensor sinh(const Tensor & self) ;
virtual Tensor & m_tan_(Tensor & self) ;
virtual Tensor & tan_out(const Tensor & self, Tensor & result) ;
virtual Tensor tan(const Tensor & self) ;
virtual Tensor & m_atan_(Tensor & self) ;
virtual Tensor & atan_out(const Tensor & self, Tensor & result) ;
virtual Tensor atan(const Tensor & self) ;
virtual Tensor & m_tanh_(Tensor & self) ;
virtual Tensor & tanh_out(const Tensor & self, Tensor & result) ;
virtual Tensor tanh(const Tensor & self) ;
virtual Tensor & m_sqrt_(Tensor & self) ;
virtual Tensor & sqrt_out(const Tensor & self, Tensor & result) ;
virtual Tensor sqrt(const Tensor & self) ;
virtual Tensor & m_rsqrt_(Tensor & self) ;
virtual Tensor & rsqrt_out(const Tensor & self, Tensor & result) ;
virtual Tensor rsqrt(const Tensor & self) ;
virtual Tensor & m_ceil_(Tensor & self) ;
virtual Tensor & ceil_out(const Tensor & self, Tensor & result) ;
virtual Tensor ceil(const Tensor & self) ;
virtual Tensor & m_floor_(Tensor & self) ;
virtual Tensor & floor_out(const Tensor & self, Tensor & result) ;
virtual Tensor floor(const Tensor & self) ;
virtual Tensor & m_round_(Tensor & self) ;
virtual Tensor & round_out(const Tensor & self, Tensor & result) ;
virtual Tensor round(const Tensor & self) ;
virtual Tensor & m_trunc_(Tensor & self) ;
virtual Tensor & trunc_out(const Tensor & self, Tensor & result) ;
virtual Tensor trunc(const Tensor & self) ;
virtual Tensor & m_frac_(Tensor & self) ;
virtual Tensor & frac_out(const Tensor & self, Tensor & result) ;
virtual Tensor frac(const Tensor & self) ;
virtual Tensor & mean_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & destination) ;
virtual Tensor mean(const Tensor & self, int64_t dim, bool keepdim) ;
virtual Tensor & mean_out(const Tensor & self, int64_t dim, Tensor & destination) ;
virtual Tensor mean(const Tensor & self, int64_t dim) ;
virtual Scalar mean(const Tensor & self) ;
virtual Tensor & var_out(const Tensor & self, int64_t dim, bool unbiased, bool keepdim, Tensor & destination) ;
virtual Tensor var(const Tensor & self, int64_t dim, bool unbiased, bool keepdim) ;
virtual Tensor & var_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & destination) ;
virtual Tensor var(const Tensor & self, int64_t dim, bool keepdim) ;
virtual Tensor & var_out(const Tensor & self, int64_t dim, Tensor & destination) ;
virtual Tensor var(const Tensor & self, int64_t dim) ;
virtual Scalar var(const Tensor & self, bool unbiased) ;
virtual Scalar var(const Tensor & self) ;
virtual Tensor & std_out(const Tensor & self, int64_t dim, bool unbiased, bool keepdim, Tensor & destination) ;
virtual Tensor std(const Tensor & self, int64_t dim, bool unbiased, bool keepdim) ;
virtual Tensor & std_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & destination) ;
virtual Tensor std(const Tensor & self, int64_t dim, bool keepdim) ;
virtual Tensor & std_out(const Tensor & self, int64_t dim, Tensor & destination) ;
virtual Tensor std(const Tensor & self, int64_t dim) ;
virtual Scalar std(const Tensor & self, bool unbiased) ;
virtual Scalar std(const Tensor & self) ;
virtual Tensor & norm_out(const Tensor & self, Scalar p, int64_t dim, bool keepdim, Tensor & destination) ;
virtual Tensor norm(const Tensor & self, Scalar p, int64_t dim, bool keepdim) ;
virtual Tensor & norm_out(const Tensor & self, Scalar p, int64_t dim, Tensor & destination) ;
virtual Tensor norm(const Tensor & self, Scalar p, int64_t dim) ;
virtual Scalar norm(const Tensor & self, Scalar p) ;
virtual Scalar norm(const Tensor & self) ;
virtual Tensor & renorm_out(const Tensor & self, Scalar p, int64_t dim, Scalar maxnorm, Tensor & destination) ;
virtual Tensor renorm(const Tensor & self, Scalar p, int64_t dim, Scalar maxnorm) ;
virtual Tensor & m_renorm_(Tensor & self, Scalar p, int64_t dim, Scalar maxnorm) ;
virtual Scalar dist(const Tensor & self, const Tensor & other, Scalar p) ;
virtual Scalar dist(const Tensor & self, const Tensor & other) ;
virtual Tensor & reciprocal_out(const Tensor & self, Tensor & destination) ;
virtual Tensor reciprocal(const Tensor & self) ;
virtual Tensor & m_reciprocal_(Tensor & self) ;
virtual Tensor & neg_out(const Tensor & self, Tensor & destination) ;
virtual Tensor neg(const Tensor & self) ;
virtual Tensor & m_neg_(Tensor & self) ;
virtual Tensor & atan2_out(const Tensor & self, const Tensor & other, Tensor & destination) ;
virtual Tensor atan2(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_atan2_(Tensor & self, const Tensor & other) ;
virtual Tensor & pow_out(const Tensor & self, Scalar exponent, Tensor & destination) ;
virtual Tensor pow(const Tensor & self, Scalar exponent) ;
virtual Tensor & pow_out(const Tensor & self, const Tensor & exponent, Tensor & destination) ;
virtual Tensor pow(const Tensor & self, const Tensor & exponent) ;
virtual Tensor & m_pow_(Tensor & self, Scalar exponent) ;
virtual Tensor & m_pow_(Tensor & self, const Tensor & exponent) ;
virtual Tensor & lerp_out(const Tensor & self, const Tensor & end, Scalar weight, Tensor & destination) ;
virtual Tensor lerp(const Tensor & self, const Tensor & end, Scalar weight) ;
virtual Tensor & m_lerp_(Tensor & self, const Tensor & end, Scalar weight) ;
virtual Tensor & linspace_out(Scalar start, Scalar end, int64_t steps, Tensor & result) ;
virtual Tensor linspace(Scalar start, Scalar end, int64_t steps) ;
virtual Tensor & linspace_out(Scalar start, Scalar end, Tensor & result) ;
virtual Tensor linspace(Scalar start, Scalar end) ;
virtual Tensor & logspace_out(Scalar start, Scalar end, int64_t steps, Tensor & result) ;
virtual Tensor logspace(Scalar start, Scalar end, int64_t steps) ;
virtual Tensor & logspace_out(Scalar start, Scalar end, Tensor & result) ;
virtual Tensor logspace(Scalar start, Scalar end) ;
virtual Tensor & histc_out(const Tensor & self, Tensor & destination) ;
virtual Tensor histc(const Tensor & self) ;
virtual Tensor & histc_out(const Tensor & self, int64_t bins, Tensor & destination) ;
virtual Tensor histc(const Tensor & self, int64_t bins) ;
virtual Tensor & histc_out(const Tensor & self, int64_t bins, Scalar min, Tensor & destination) ;
virtual Tensor histc(const Tensor & self, int64_t bins, Scalar min) ;
virtual Tensor & histc_out(const Tensor & self, int64_t bins, Scalar min, Scalar max, Tensor & destination) ;
virtual Tensor histc(const Tensor & self, int64_t bins, Scalar min, Scalar max) ;
virtual Tensor & m_zero_(Tensor & self) ;
virtual Tensor & sum_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & result) ;
virtual Tensor sum(const Tensor & self, int64_t dim, bool keepdim) ;
virtual Tensor & sum_out(const Tensor & self, int64_t dim, Tensor & result) ;
virtual Tensor sum(const Tensor & self, int64_t dim) ;
virtual Scalar sum(const Tensor & self) ;
virtual Tensor & prod_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & result) ;
virtual Tensor prod(const Tensor & self, int64_t dim, bool keepdim) ;
virtual Tensor & prod_out(const Tensor & self, int64_t dim, Tensor & result) ;
virtual Tensor prod(const Tensor & self, int64_t dim) ;
virtual Scalar prod(const Tensor & self) ;
virtual Tensor & cumsum_out(const Tensor & self, int64_t dim, Tensor & result) ;
virtual Tensor cumsum(const Tensor & self, int64_t dim) ;
virtual Tensor & cumprod_out(const Tensor & self, int64_t dim, Tensor & result) ;
virtual Tensor cumprod(const Tensor & self, int64_t dim) ;
virtual Tensor & sign_out(const Tensor & self, Tensor & result) ;
virtual Tensor sign(const Tensor & self) ;
virtual Tensor & m_sign_(Tensor & self) ;
virtual Scalar trace(const Tensor & self) ;
virtual Tensor & add_out(const Tensor & self, Scalar value, const Tensor & other, Tensor & result) ;
virtual Tensor add(const Tensor & self, Scalar value, const Tensor & other) ;
virtual Tensor & add_out(const Tensor & self, Scalar value, SparseTensor other, Tensor & result) ;
virtual Tensor add(const Tensor & self, Scalar value, SparseTensor other) ;
virtual Tensor & add_out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor add(const Tensor & self, Scalar value) ;
virtual Tensor & add_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor add(const Tensor & self, const Tensor & other) ;
virtual Tensor & add_out(const Tensor & self, SparseTensor other, Tensor & result) ;
virtual Tensor add(const Tensor & self, SparseTensor other) ;
virtual Tensor & m_add_(Tensor & self, Scalar value, const Tensor & other) ;
virtual Tensor & m_add_(Tensor & self, Scalar value, SparseTensor other) ;
virtual Tensor & m_add_(Tensor & self, Scalar value) ;
virtual Tensor & m_add_(Tensor & self, const Tensor & other) ;
virtual Tensor & m_add_(Tensor & self, SparseTensor other) ;
virtual Tensor & sub_out(const Tensor & self, Scalar value, const Tensor & other, Tensor & result) ;
virtual Tensor sub(const Tensor & self, Scalar value, const Tensor & other) ;
virtual Tensor & sub_out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor sub(const Tensor & self, Scalar value) ;
virtual Tensor & sub_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor sub(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_sub_(Tensor & self, Scalar value, const Tensor & other) ;
virtual Tensor & m_sub_(Tensor & self, Scalar value) ;
virtual Tensor & m_sub_(Tensor & self, const Tensor & other) ;
virtual Tensor & mul_out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor mul(const Tensor & self, Scalar value) ;
virtual Tensor & mul_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor mul(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_mul_(Tensor & self, Scalar value) ;
virtual Tensor & m_mul_(Tensor & self, const Tensor & other) ;
virtual Tensor & div_out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor div(const Tensor & self, Scalar value) ;
virtual Tensor & div_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor div(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_div_(Tensor & self, Scalar value) ;
virtual Tensor & m_div_(Tensor & self, const Tensor & other) ;
virtual Tensor & fmod_out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor fmod(const Tensor & self, Scalar value) ;
virtual Tensor & fmod_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor fmod(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_fmod_(Tensor & self, Scalar value) ;
virtual Tensor & m_fmod_(Tensor & self, const Tensor & other) ;
virtual Tensor & remainder_out(const Tensor & self, Scalar value, Tensor & result) ;
virtual Tensor remainder(const Tensor & self, Scalar value) ;
virtual Tensor & remainder_out(const Tensor & self, const Tensor & other, Tensor & result) ;
virtual Tensor remainder(const Tensor & self, const Tensor & other) ;
virtual Tensor & m_remainder_(Tensor & self, Scalar value) ;
virtual Tensor & m_remainder_(Tensor & self, const Tensor & other) ;
virtual Tensor & clamp_out(const Tensor & self, Scalar min, Scalar max, Tensor & destination) ;
virtual Tensor clamp(const Tensor & self, Scalar min, Scalar max) ;
virtual Tensor & clamp_out(const Tensor & self, Scalar min, Tensor & result) ;
virtual Tensor clamp(const Tensor & self, Scalar min) ;
virtual Tensor & m_clamp_(Tensor & self, Scalar min, Scalar max) ;
virtual Tensor & m_clamp_(Tensor & self, Scalar min) ;
virtual Scalar dot(const Tensor & self, const Tensor & tensor) ;
virtual Tensor & tril_out(const Tensor & self, int64_t diagonal, Tensor & destination) ;
virtual Tensor tril(const Tensor & self, int64_t diagonal) ;
virtual Tensor & tril_out(const Tensor & self, Tensor & destination) ;
virtual Tensor tril(const Tensor & self) ;
virtual Tensor & m_tril_(Tensor & self, int64_t diagonal) ;
virtual Tensor & m_tril_(Tensor & self) ;
virtual Tensor & triu_out(const Tensor & self, int64_t diagonal, Tensor & destination) ;
virtual Tensor triu(const Tensor & self, int64_t diagonal) ;
virtual Tensor & triu_out(const Tensor & self, Tensor & destination) ;
virtual Tensor triu(const Tensor & self) ;
virtual Tensor & m_triu_(Tensor & self, int64_t diagonal) ;
virtual Tensor & m_triu_(Tensor & self) ;
virtual Tensor & cross_out(const Tensor & self, const Tensor & other, int64_t dim, Tensor & destination) ;
virtual Tensor cross(const Tensor & self, const Tensor & other, int64_t dim) ;
virtual Tensor & cross_out(const Tensor & self, const Tensor & other, Tensor & destination) ;
virtual Tensor cross(const Tensor & self, const Tensor & other) ;
virtual Tensor & eye_out(int64_t n, Tensor & result) ;
virtual Tensor eye(int64_t n) ;
virtual Tensor & eye_out(int64_t n, int64_t m, Tensor & result) ;
virtual Tensor eye(int64_t n, int64_t m) ;
virtual Tensor & diag_out(const Tensor & self, int64_t diagonal, Tensor & result) ;
virtual Tensor diag(const Tensor & self, int64_t diagonal) ;
virtual Tensor & diag_out(const Tensor & self, Tensor & result) ;
virtual Tensor diag(const Tensor & self) ;
virtual Tensor & addmm_out(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & mat1, const Tensor & mat2, Tensor & result) ;
virtual Tensor addmm(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & mat1, const Tensor & mat2) ;
virtual Tensor & addmm_out(Scalar beta, const Tensor & self, const Tensor & mat1, const Tensor & mat2, Tensor & result) ;
virtual Tensor addmm(Scalar beta, const Tensor & self, const Tensor & mat1, const Tensor & mat2) ;
virtual Tensor & addmm_out(const Tensor & self, const Tensor & mat1, const Tensor & mat2, Tensor & result) ;
virtual Tensor addmm(const Tensor & self, const Tensor & mat1, const Tensor & mat2) ;
virtual Tensor & m_addmm_(Tensor & self, Scalar beta, Scalar alpha, const Tensor & mat1, const Tensor & mat2) ;
virtual Tensor & m_addmm_(Tensor & self, Scalar beta, const Tensor & mat1, const Tensor & mat2) ;
virtual Tensor & m_addmm_(Tensor & self, const Tensor & mat1, const Tensor & mat2) ;
virtual Tensor & addmv_out(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & mat, const Tensor & vec, Tensor & result) ;
virtual Tensor addmv(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & mat, const Tensor & vec) ;
virtual Tensor & addmv_out(Scalar beta, const Tensor & self, const Tensor & mat, const Tensor & vec, Tensor & result) ;
virtual Tensor addmv(Scalar beta, const Tensor & self, const Tensor & mat, const Tensor & vec) ;
virtual Tensor & addmv_out(const Tensor & self, const Tensor & mat, const Tensor & vec, Tensor & result) ;
virtual Tensor addmv(const Tensor & self, const Tensor & mat, const Tensor & vec) ;
virtual Tensor & m_addmv_(Tensor & self, Scalar beta, Scalar alpha, const Tensor & mat, const Tensor & vec) ;
virtual Tensor & m_addmv_(Tensor & self, Scalar beta, const Tensor & mat, const Tensor & vec) ;
virtual Tensor & m_addmv_(Tensor & self, const Tensor & mat, const Tensor & vec) ;
virtual Tensor & addr_out(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & vec1, const Tensor & vec2, Tensor & result) ;
virtual Tensor addr(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & vec1, const Tensor & vec2) ;
virtual Tensor & addr_out(Scalar beta, const Tensor & self, const Tensor & vec1, const Tensor & vec2, Tensor & result) ;
virtual Tensor addr(Scalar beta, const Tensor & self, const Tensor & vec1, const Tensor & vec2) ;
virtual Tensor & addr_out(const Tensor & self, const Tensor & vec1, const Tensor & vec2, Tensor & result) ;
virtual Tensor addr(const Tensor & self, const Tensor & vec1, const Tensor & vec2) ;
virtual Tensor & m_addr_(Tensor & self, Scalar beta, Scalar alpha, const Tensor & vec1, const Tensor & vec2) ;
virtual Tensor & m_addr_(Tensor & self, Scalar beta, const Tensor & vec1, const Tensor & vec2) ;
virtual Tensor & m_addr_(Tensor & self, const Tensor & vec1, const Tensor & vec2) ;
virtual Tensor & ger_out(const Tensor & self, const Tensor & vec2, Tensor & result) ;
virtual Tensor ger(const Tensor & self, const Tensor & vec2) ;
virtual Tensor & mv_out(const Tensor & self, const Tensor & vec, Tensor & result) ;
virtual Tensor mv(const Tensor & self, const Tensor & vec) ;
virtual Tensor & mm_out(const Tensor & self, const Tensor & mat2, Tensor & result) ;
virtual Tensor mm(const Tensor & self, const Tensor & mat2) ;
virtual Tensor & bmm_out(const Tensor & self, const Tensor & mat2, Tensor & result) ;
virtual Tensor bmm(const Tensor & self, const Tensor & mat2) ;
virtual Tensor & addbmm_out(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & batch1, const Tensor & batch2, Tensor & result) ;
virtual Tensor addbmm(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & addbmm_out(Scalar beta, const Tensor & self, const Tensor & batch1, const Tensor & batch2, Tensor & result) ;
virtual Tensor addbmm(Scalar beta, const Tensor & self, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & addbmm_out(const Tensor & self, const Tensor & batch1, const Tensor & batch2, Tensor & result) ;
virtual Tensor addbmm(const Tensor & self, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & m_addbmm_(Tensor & self, Scalar beta, Scalar alpha, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & m_addbmm_(Tensor & self, Scalar beta, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & m_addbmm_(Tensor & self, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & baddbmm_out(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & batch1, const Tensor & batch2, Tensor & result) ;
virtual Tensor baddbmm(Scalar beta, const Tensor & self, Scalar alpha, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & baddbmm_out(Scalar beta, const Tensor & self, const Tensor & batch1, const Tensor & batch2, Tensor & result) ;
virtual Tensor baddbmm(Scalar beta, const Tensor & self, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & baddbmm_out(const Tensor & self, const Tensor & batch1, const Tensor & batch2, Tensor & result) ;
virtual Tensor baddbmm(const Tensor & self, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & m_baddbmm_(Tensor & self, Scalar beta, Scalar alpha, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & m_baddbmm_(Tensor & self, Scalar beta, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & m_baddbmm_(Tensor & self, const Tensor & batch1, const Tensor & batch2) ;
virtual Tensor & addcmul_out(const Tensor & self, Scalar value, const Tensor & tensor1, const Tensor & tensor2, Tensor & result) ;
virtual Tensor addcmul(const Tensor & self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) ;
virtual Tensor & addcmul_out(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Tensor & result) ;
virtual Tensor addcmul(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2) ;
virtual Tensor & m_addcmul_(Tensor & self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) ;
virtual Tensor & m_addcmul_(Tensor & self, const Tensor & tensor1, const Tensor & tensor2) ;
virtual Tensor & addcdiv_out(const Tensor & self, Scalar value, const Tensor & tensor1, const Tensor & tensor2, Tensor & result) ;
virtual Tensor addcdiv(const Tensor & self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) ;
virtual Tensor & addcdiv_out(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, Tensor & result) ;
virtual Tensor addcdiv(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2) ;
virtual Tensor & m_addcdiv_(Tensor & self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) ;
virtual Tensor & m_addcdiv_(Tensor & self, const Tensor & tensor1, const Tensor & tensor2) ;
virtual std::tuple<Tensor &,Tensor &> gesv_out(const Tensor & self, const Tensor & A, Tensor & solution, Tensor & lu) ;
virtual std::tuple<Tensor,Tensor> gesv(const Tensor & self, const Tensor & A) ;
virtual std::tuple<Tensor &,Tensor &> gels_out(const Tensor & self, const Tensor & A, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> gels(const Tensor & self, const Tensor & A) ;
virtual std::tuple<Tensor &,Tensor &> trtrs_out(const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> trtrs(const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular) ;
virtual std::tuple<Tensor &,Tensor &> trtrs_out(const Tensor & self, const Tensor & A, bool upper, bool transpose, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> trtrs(const Tensor & self, const Tensor & A, bool upper, bool transpose) ;
virtual std::tuple<Tensor &,Tensor &> trtrs_out(const Tensor & self, const Tensor & A, bool upper, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> trtrs(const Tensor & self, const Tensor & A, bool upper) ;
virtual std::tuple<Tensor &,Tensor &> trtrs_out(const Tensor & self, const Tensor & A, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> trtrs(const Tensor & self, const Tensor & A) ;
virtual std::tuple<Tensor &,Tensor &> symeig_out(const Tensor & self, bool eigenvectors, bool upper, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> symeig(const Tensor & self, bool eigenvectors, bool upper) ;
virtual std::tuple<Tensor &,Tensor &> symeig_out(const Tensor & self, bool eigenvectors, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> symeig(const Tensor & self, bool eigenvectors) ;
virtual std::tuple<Tensor &,Tensor &> symeig_out(const Tensor & self, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> symeig(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> eig_out(const Tensor & self, bool eigenvectors, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> eig(const Tensor & self, bool eigenvectors) ;
virtual std::tuple<Tensor &,Tensor &> eig_out(const Tensor & self, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> eig(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &,Tensor &> svd_out(const Tensor & self, bool some, Tensor & res1, Tensor & res2, Tensor & res3) ;
virtual std::tuple<Tensor,Tensor,Tensor> svd(const Tensor & self, bool some) ;
virtual std::tuple<Tensor &,Tensor &,Tensor &> svd_out(const Tensor & self, Tensor & res1, Tensor & res2, Tensor & res3) ;
virtual std::tuple<Tensor,Tensor,Tensor> svd(const Tensor & self) ;
virtual Tensor & inverse_out(const Tensor & self, Tensor & output) ;
virtual Tensor inverse(const Tensor & self) ;
virtual Tensor & potrf_out(const Tensor & self, bool upper, Tensor & output) ;
virtual Tensor potrf(const Tensor & self, bool upper) ;
virtual Tensor & potrf_out(const Tensor & self, Tensor & output) ;
virtual Tensor potrf(const Tensor & self) ;
virtual Tensor & potrs_out(const Tensor & self, const Tensor & input2, bool upper, Tensor & result) ;
virtual Tensor potrs(const Tensor & self, const Tensor & input2, bool upper) ;
virtual Tensor & potrs_out(const Tensor & self, const Tensor & input2, Tensor & result) ;
virtual Tensor potrs(const Tensor & self, const Tensor & input2) ;
virtual Tensor & potri_out(const Tensor & self, bool upper, Tensor & output) ;
virtual Tensor potri(const Tensor & self, bool upper) ;
virtual Tensor & potri_out(const Tensor & self, Tensor & output) ;
virtual Tensor potri(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> pstrf_out(const Tensor & self, bool upper, Scalar tol, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> pstrf(const Tensor & self, bool upper, Scalar tol) ;
virtual std::tuple<Tensor &,Tensor &> pstrf_out(const Tensor & self, bool upper, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> pstrf(const Tensor & self, bool upper) ;
virtual std::tuple<Tensor &,Tensor &> pstrf_out(const Tensor & self, Scalar tol, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> pstrf(const Tensor & self, Scalar tol) ;
virtual std::tuple<Tensor &,Tensor &> pstrf_out(const Tensor & self, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> pstrf(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> qr_out(const Tensor & self, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> qr(const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> geqrf_out(const Tensor & self, Tensor & res1, Tensor & res2) ;
virtual std::tuple<Tensor,Tensor> geqrf(const Tensor & self) ;
virtual std::tuple<Tensor &,const Tensor &> orgqr_out(const Tensor & self, const Tensor & input2, Tensor & result) ;
virtual std::tuple<Tensor,const Tensor &> orgqr(const Tensor & self, const Tensor & input2) ;
virtual std::tuple<Tensor &,const Tensor &> ormqr_out(const Tensor & self, const Tensor & input2, const Tensor & input3, bool left, bool transpose, Tensor & result) ;
virtual std::tuple<Tensor,const Tensor &> ormqr(const Tensor & self, const Tensor & input2, const Tensor & input3, bool left, bool transpose) ;
virtual std::tuple<Tensor &,const Tensor &> ormqr_out(const Tensor & self, const Tensor & input2, const Tensor & input3, bool left, Tensor & result) ;
virtual std::tuple<Tensor,const Tensor &> ormqr(const Tensor & self, const Tensor & input2, const Tensor & input3, bool left) ;
virtual std::tuple<Tensor &,const Tensor &> ormqr_out(const Tensor & self, const Tensor & input2, const Tensor & input3, Tensor & result) ;
virtual std::tuple<Tensor,const Tensor &> ormqr(const Tensor & self, const Tensor & input2, const Tensor & input3) ;
virtual std::tuple<Tensor &,Tensor &> btrifact_out(const Tensor & info, bool pivot, const Tensor & self, Tensor & result, Tensor & pivots) ;
virtual std::tuple<Tensor,Tensor> btrifact(const Tensor & info, bool pivot, const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> btrifact_out(const Tensor & info, const Tensor & self, Tensor & result, Tensor & pivots) ;
virtual std::tuple<Tensor,Tensor> btrifact(const Tensor & info, const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> btrifact_out(bool pivot, const Tensor & self, Tensor & result, Tensor & pivots) ;
virtual std::tuple<Tensor,Tensor> btrifact(bool pivot, const Tensor & self) ;
virtual std::tuple<Tensor &,Tensor &> btrifact_out(const Tensor & self, Tensor & result, Tensor & pivots) ;
virtual std::tuple<Tensor,Tensor> btrifact(const Tensor & self) ;
virtual Tensor & btrisolve_out(const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots, Tensor & result) ;
virtual Tensor btrisolve(const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots) ;
virtual Tensor & randperm_out(Generator & generator, int64_t n, Tensor & result) ;
virtual Tensor randperm(Generator & generator, int64_t n) ;
virtual Tensor & randperm_out(int64_t n, Tensor & result) ;
virtual Tensor randperm(int64_t n) ;
virtual Tensor & multinomial_out(Generator & generator, const Tensor & self, int64_t num_samples, bool replacement, Tensor & result) ;
virtual Tensor multinomial(Generator & generator, const Tensor & self, int64_t num_samples, bool replacement) ;
virtual Tensor & multinomial_out(Generator & generator, const Tensor & self, int64_t num_samples, Tensor & result) ;
virtual Tensor multinomial(Generator & generator, const Tensor & self, int64_t num_samples) ;
virtual Tensor & multinomial_out(const Tensor & self, int64_t num_samples, bool replacement, Tensor & result) ;
virtual Tensor multinomial(const Tensor & self, int64_t num_samples, bool replacement) ;
virtual Tensor & multinomial_out(const Tensor & self, int64_t num_samples, Tensor & result) ;
virtual Tensor multinomial(const Tensor & self, int64_t num_samples) ;
virtual Tensor & m_uniform_(Tensor & self, Generator & generator, double from, double to) ;
virtual Tensor & m_uniform_(Tensor & self, Generator & generator, double from) ;
virtual Tensor & m_uniform_(Tensor & self, double from, double to) ;
virtual Tensor & m_uniform_(Tensor & self, Generator & generator) ;
virtual Tensor & m_uniform_(Tensor & self, double from) ;
virtual Tensor & m_uniform_(Tensor & self) ;
virtual Tensor & m_cauchy_(Tensor & self, Generator & generator, double median, double sigma) ;
virtual Tensor & m_cauchy_(Tensor & self, Generator & generator, double median) ;
virtual Tensor & m_cauchy_(Tensor & self, double median, double sigma) ;
virtual Tensor & m_cauchy_(Tensor & self, Generator & generator) ;
virtual Tensor & m_cauchy_(Tensor & self, double median) ;
virtual Tensor & m_cauchy_(Tensor & self) ;
virtual Tensor & m_log_normal_(Tensor & self, Generator & generator, double mean, double std) ;
virtual Tensor & m_log_normal_(Tensor & self, Generator & generator, double mean) ;
virtual Tensor & m_log_normal_(Tensor & self, double mean, double std) ;
virtual Tensor & m_log_normal_(Tensor & self, Generator & generator) ;
virtual Tensor & m_log_normal_(Tensor & self, double mean) ;
virtual Tensor & m_log_normal_(Tensor & self) ;
virtual Tensor & rand_out(Generator & generator, IntList size, Tensor & result) ;
virtual Tensor rand(Generator & generator, IntList size) ;
virtual Tensor & rand_out(IntList size, Tensor & result) ;
virtual Tensor rand(IntList size) ;
virtual Tensor & randn_out(Generator & generator, IntList size, Tensor & result) ;
virtual Tensor randn(Generator & generator, IntList size) ;
virtual Tensor & randn_out(IntList size, Tensor & result) ;
virtual Tensor randn(IntList size) ;
virtual Tensor & m_geometric_(Tensor & self, Generator & generator, double p) ;
virtual Tensor & m_geometric_(Tensor & self, double p) ;
virtual int64_t m_size(const Tensor & self, int64_t dim) ;
virtual int64_t m_stride(const Tensor & self, int64_t dim) ;
virtual Tensor tensor(Storage & storage, int64_t storageOffset, IntList size, IntList stride) ;
virtual Tensor tensor(Storage & storage, int64_t storageOffset, IntList size) ;
virtual Tensor tensor(IntList size, IntList stride) ;
virtual Tensor tensor(IntList size) ;
virtual Tensor tensor() ;
virtual Tensor & select_out(const Tensor & self, int dim, int64_t sliceIndex, Tensor & result) ;
virtual Tensor select(const Tensor & self, int dim, int64_t sliceIndex) ;
virtual Tensor & m_assign_(Tensor & self, const Tensor & src) ;
virtual Tensor & cat_out(TensorList tensors, int dim, Tensor & self) ;
virtual Tensor cat(TensorList tensors, int dim) ;
virtual void Abs_updateOutput(const Tensor & input, const Tensor & output) ;
virtual void Abs_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput) ;
virtual void AbsCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage) ;
virtual void AbsCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage) ;
virtual void BCECriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, const Tensor & weights) ;
virtual void BCECriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage) ;
virtual void BCECriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, const Tensor & weights) ;
virtual void BCECriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage) ;
virtual void ClassNLLCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, const Tensor & weights, const Tensor & total_weight, int64_t ignore_index) ;
virtual void ClassNLLCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, const Tensor & total_weight, int64_t ignore_index) ;
virtual void ClassNLLCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, const Tensor & weights, const Tensor & total_weight, int64_t ignore_index) ;
virtual void ClassNLLCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, const Tensor & total_weight, int64_t ignore_index) ;
virtual void SpatialClassNLLCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, const Tensor & weights, const Tensor & total_weight, int64_t ignore_index) ;
virtual void SpatialClassNLLCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, const Tensor & total_weight, int64_t ignore_index) ;
virtual void SpatialClassNLLCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, const Tensor & weights, const Tensor & total_weight, int64_t ignore_index) ;
virtual void SpatialClassNLLCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, const Tensor & total_weight, int64_t ignore_index) ;
virtual void ELU_updateOutput(const Tensor & input, const Tensor & output, Scalar alpha, bool inplace) ;
virtual void ELU_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output, Scalar alpha, bool inplace) ;
virtual void DistKLDivCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage) ;
virtual void DistKLDivCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage) ;
virtual void GatedLinear_updateOutput(const Tensor & input, const Tensor & output, int dim) ;
virtual void GatedLinear_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int dim) ;
virtual void HardShrink_updateOutput(const Tensor & input, const Tensor & output, Scalar lambda) ;
virtual void HardShrink_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, Scalar lambda) ;
virtual void HardTanh_updateOutput(const Tensor & input, const Tensor & output, Scalar min_val, Scalar max_val, bool inplace) ;
virtual void HardTanh_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, Scalar min_val, Scalar max_val, bool inplace) ;
virtual void L1Cost_updateOutput(const Tensor & input, const Tensor & output) ;
virtual void L1Cost_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput) ;
virtual void L1Cost_updateGradInput(const Tensor & input, const Tensor & gradInput) ;
virtual void LeakyReLU_updateOutput(const Tensor & input, const Tensor & output, Scalar negval, bool inplace) ;
virtual void LeakyReLU_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, Scalar negval, bool inplace) ;
virtual void GRUFused_updateOutput(const Tensor & input, const Tensor & hidden, const Tensor & bias1, const Tensor & bias2, const Tensor & hx, const Tensor & output, const Tensor & storage) ;
virtual void GRUFused_updateOutput(const Tensor & input, const Tensor & hidden, const Tensor & bias1, const Tensor & hx, const Tensor & output, const Tensor & storage) ;
virtual void GRUFused_updateOutput(const Tensor & input, const Tensor & hidden, const Tensor & hx, const Tensor & output, const Tensor & storage) ;
virtual void GRUFused_updateGradInput(const Tensor & gradInInput, const Tensor & gradInHidden, const Tensor & gradOutput, const Tensor & gradInputHx, const Tensor & storage) ;
virtual void LSTMFused_updateOutput(const Tensor & input, const Tensor & hidden, const Tensor & bias1, const Tensor & bias2, const Tensor & cell, const Tensor & output, const Tensor & outputCell) ;
virtual void LSTMFused_updateOutput(const Tensor & input, const Tensor & hidden, const Tensor & bias1, const Tensor & cell, const Tensor & output, const Tensor & outputCell) ;
virtual void LSTMFused_updateOutput(const Tensor & input, const Tensor & hidden, const Tensor & cell, const Tensor & output, const Tensor & outputCell) ;
virtual void LSTMFused_updateGradInput(const Tensor & storage, const Tensor & gradInGates, const Tensor & cx, const Tensor & cy, const Tensor & gradOutput, const Tensor & gradOutputCell, const Tensor & gradInputCx) ;
virtual void LogSigmoid_updateOutput(const Tensor & input, const Tensor & output, const Tensor & buffer) ;
virtual void LogSigmoid_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & buffer) ;
virtual void LogSoftMax_updateOutput(const Tensor & input, const Tensor & output) ;
virtual void LogSoftMax_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output) ;
virtual void MarginCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, Scalar margin) ;
virtual void MarginCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, Scalar margin) ;
virtual void SoftMarginCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage) ;
virtual void SoftMarginCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage) ;
virtual void MSECriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage) ;
virtual void MSECriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage) ;
virtual void MultiLabelMarginCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, const Tensor & isTarget, bool sizeAverage) ;
virtual void MultiLabelMarginCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, const Tensor & isTarget, bool sizeAverage) ;
virtual void MultiMarginCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, int p, const Tensor & weights, Scalar margin) ;
virtual void MultiMarginCriterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage, int p, Scalar margin) ;
virtual void MultiMarginCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, int p, const Tensor & weights, Scalar margin) ;
virtual void MultiMarginCriterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage, int p, Scalar margin) ;
virtual void PReLU_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, int64_t nOutputPlane) ;
virtual void PReLU_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, int64_t nOutputPlane) ;
virtual void PReLU_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & gradWeight, const Tensor & gradWeightBuf, const Tensor & gradWeightBuf2, int64_t nOutputPlane, Scalar scale) ;
virtual void Linear_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & addBuffer) ;
virtual void Linear_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight) ;
virtual void Linear_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & bias, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & addBuffer, Scalar scale) ;
virtual void RReLU_updateOutput(const Tensor & input, const Tensor & output, const Tensor & noise, Scalar lower, Scalar upper, bool train, bool inplace, Generator & generator) ;
virtual void RReLU_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & noise, Scalar lower, Scalar upper, bool train, bool inplace) ;
virtual void Sigmoid_updateOutput(const Tensor & input, const Tensor & output) ;
virtual void Sigmoid_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output) ;
virtual void Sigmoid_updateGradInput(const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output) ;
virtual void SmoothL1Criterion_updateOutput(const Tensor & input, const Tensor & target, const Tensor & output, bool sizeAverage) ;
virtual void SmoothL1Criterion_updateGradInput(const Tensor & input, const Tensor & target, const Tensor & gradInput, bool sizeAverage) ;
virtual void SoftMax_updateOutput(const Tensor & input, const Tensor & output) ;
virtual void SoftMax_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output) ;
virtual void SoftPlus_updateOutput(const Tensor & input, const Tensor & output, Scalar beta, Scalar threshold) ;
virtual void SoftPlus_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output, Scalar beta, Scalar threshold) ;
virtual void SoftShrink_updateOutput(const Tensor & input, const Tensor & output, Scalar lambda) ;
virtual void SoftShrink_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, Scalar lambda) ;
virtual void IndexLinear_updateOutput(const Tensor & keys, int64_t keysOffset, const Tensor & values, const Tensor & sizes, const Tensor & cumSumSizes, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & normalizedValues, int train) ;
virtual void IndexLinear_accGradParameters(const Tensor & keys, int64_t keysOffset, const Tensor & values, const Tensor & sizes, const Tensor & cumSumSizes, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & weight, const Tensor & bias, const Tensor & valuesBuffer, Scalar weightDecay, Scalar scale) ;
virtual void SparseLinear_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias) ;
virtual void SparseLinear_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & weight, const Tensor & bias, Scalar weightDecay, Scalar scale) ;
virtual void Sqrt_updateOutput(const Tensor & input, const Tensor & output, Scalar eps) ;
virtual void Sqrt_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output) ;
virtual void Square_updateOutput(const Tensor & input, const Tensor & output) ;
virtual void Square_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput) ;
virtual void Tanh_updateOutput(const Tensor & input, const Tensor & output) ;
virtual void Tanh_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output) ;
virtual void Tanh_updateGradInput(const Tensor & gradOutput, const Tensor & gradInput, const Tensor & output) ;
virtual void Threshold_updateOutput(const Tensor & input, const Tensor & output, Scalar threshold, Scalar val, bool inplace) ;
virtual void Threshold_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, Scalar threshold, Scalar val, bool inplace) ;
virtual void TemporalConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, int kW, int dW, int inputFrameSize, int outputFrameSize) ;
virtual void TemporalConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, int kW, int dW) ;
virtual void TemporalConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, int kW, int dW, Scalar scale) ;
virtual void TemporalMaxPooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int kW, int dW) ;
virtual void TemporalMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices, int kW, int dW) ;
virtual void TemporalSubSampling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, int kW, int dW, int inputFrameSize) ;
virtual void TemporalSubSampling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, int kW, int dW) ;
virtual void TemporalSubSampling_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, int kW, int dW, Scalar scale) ;
virtual void TemporalRowConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & finput, const Tensor & fgradInput, int kW, int dW, int padW, bool featFirst) ;
virtual void TemporalRowConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int kW, int dW, int padW, bool featFirst) ;
virtual void TemporalRowConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & finput, const Tensor & fgradInput, int kW, int dW, int padW, bool featFirst, Scalar scale) ;
virtual void BatchNormalization_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double momentum, double eps) ;
virtual void BatchNormalization_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double momentum, double eps) ;
virtual void BatchNormalization_updateOutput(const Tensor & input, const Tensor & output, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double momentum, double eps) ;
virtual void BatchNormalization_backward(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & weight, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double scale, double eps) ;
virtual void BatchNormalization_backward(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double scale, double eps) ;
virtual void BatchNormalization_backward(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & gradWeight, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double scale, double eps) ;
virtual void BatchNormalization_backward(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double scale, double eps) ;
virtual void BatchNormalization_backward(const Tensor & input, const Tensor & gradOutput, const Tensor & running_mean, const Tensor & running_var, const Tensor & save_mean, const Tensor & save_std, bool train, double scale, double eps) ;
virtual void SpatialConvolutionMap_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & connTable, int nInputPlane, int nOutputPlane, int dW, int dH) ;
virtual void SpatialConvolutionMap_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & bias, const Tensor & connTable, int nInputPlane, int nOutputPlane, int dW, int dH) ;
virtual void SpatialConvolutionMap_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & connTable, int nInputPlane, int nOutputPlane, int dW, int dH, Scalar scale) ;
virtual void SpatialConvolutionMM_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH) ;
virtual void SpatialConvolutionMM_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH) ;
virtual void SpatialConvolutionMM_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH) ;
virtual void SpatialConvolutionMM_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH, Scalar scale) ;
virtual void SpatialConvolutionMM_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH, Scalar scale) ;
virtual void SpatialDepthWiseConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH) ;
virtual void SpatialDepthWiseConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH) ;
virtual void SpatialDepthWiseConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH) ;
virtual void SpatialDepthWiseConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH, Scalar scale) ;
virtual void SpatialDepthWiseConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH, Scalar scale) ;
virtual void SpatialConvolutionLocal_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH, int64_t inputWidth, int64_t inputHeight, int64_t outputWidth, int64_t outputHeight) ;
virtual void SpatialConvolutionLocal_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH, int64_t inputWidth, int64_t inputHeight, int64_t outputWidth, int64_t outputHeight) ;
virtual void SpatialConvolutionLocal_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & finput, const Tensor & fgradInput, int kW, int kH, int dW, int dH, int padW, int padH, int64_t inputWidth, int64_t inputHeight, int64_t outputWidth, int64_t outputHeight, Scalar scale) ;
virtual void SpatialAdaptiveMaxPooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int owidth, int oheight) ;
virtual void SpatialAdaptiveMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices) ;
virtual void SpatialAdaptiveAveragePooling_updateOutput(const Tensor & input, const Tensor & output, int owidth, int oheight) ;
virtual void SpatialAdaptiveAveragePooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput) ;
virtual void SpatialAveragePooling_updateOutput(const Tensor & input, const Tensor & output, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode, bool count_include_pad) ;
virtual void SpatialAveragePooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode, bool count_include_pad) ;
virtual void SpatialFractionalMaxPooling_updateOutput(const Tensor & input, const Tensor & output, int outputW, int outputH, int poolSizeW, int poolSizeH, const Tensor & indices, const Tensor & randomSamples) ;
virtual void SpatialFractionalMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int outputW, int outputH, int poolSizeW, int poolSizeH, const Tensor & indices) ;
virtual void SpatialFullConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int adjW, int adjH) ;
virtual void SpatialFullConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int adjW, int adjH) ;
virtual void SpatialFullConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & gradColumns, int kW, int kH, int dW, int dH, int padW, int padH, int adjW, int adjH) ;
virtual void SpatialFullConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int adjW, int adjH, Scalar scale) ;
virtual void SpatialFullConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int adjW, int adjH, Scalar scale) ;
virtual void SpatialFullConvolutionMap_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & connTable, int nInputPlane, int nOutputPlane, int dW, int dH) ;
virtual void SpatialFullConvolutionMap_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & bias, const Tensor & connTable, int nInputPlane, int nOutputPlane, int dW, int dH) ;
virtual void SpatialFullConvolutionMap_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & connTable, int nInputPlane, int nOutputPlane, int dW, int dH, Scalar scale) ;
virtual void SpatialDilatedConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH) ;
virtual void SpatialDilatedConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH) ;
virtual void SpatialDilatedConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & gradColumns, int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH) ;
virtual void SpatialDilatedConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH, Scalar scale) ;
virtual void SpatialDilatedConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & columns, const Tensor & ones, int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH, Scalar scale) ;
virtual void SpatialMaxPooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode) ;
virtual void SpatialMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode) ;
virtual void SpatialDilatedMaxPooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH, bool ceil_mode) ;
virtual void SpatialDilatedMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices, int kW, int kH, int dW, int dH, int padW, int padH, int dilationW, int dilationH, bool ceil_mode) ;
virtual void SpatialMaxUnpooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int owidth, int oheight) ;
virtual void SpatialMaxUnpooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices, int owidth, int oheight) ;
virtual void SpatialSubSampling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, int kW, int kH, int dW, int dH) ;
virtual void SpatialSubSampling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, int kW, int kH, int dW, int dH) ;
virtual void SpatialSubSampling_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, int kW, int kH, int dW, int dH, Scalar scale) ;
virtual void SpatialUpSamplingNearest_updateOutput(const Tensor & input, const Tensor & output, int scale_factor) ;
virtual void SpatialUpSamplingNearest_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int scale_factor) ;
virtual void SpatialUpSamplingBilinear_updateOutput(const Tensor & input, const Tensor & output, int outputHeight, int outputWidth) ;
virtual void SpatialUpSamplingBilinear_updateGradInput(const Tensor & gradOutput, const Tensor & gradInput, int nbatch, int nchannels, int inputHeight, int inputWidth, int outputHeight, int outputWidth) ;
virtual void SpatialGridSamplerBilinear_updateOutput(const Tensor & input, const Tensor & grid, const Tensor & output) ;
virtual void SpatialGridSamplerBilinear_updateGradInput(const Tensor & input, const Tensor & gradInput, const Tensor & grid, const Tensor & gradGrid, const Tensor & gradOutput) ;
virtual void VolumetricAveragePooling_updateOutput(const Tensor & input, const Tensor & output, int kT, int kW, int kH, int dT, int dW, int dH) ;
virtual void VolumetricAveragePooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int kT, int kW, int kH, int dT, int dW, int dH) ;
virtual void VolumetricConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void VolumetricConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void VolumetricConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & finput, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void VolumetricConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH, Scalar scale) ;
virtual void VolumetricConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH, Scalar scale) ;
virtual void VolumetricConvolutionMM_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & finput, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void VolumetricConvolutionMM_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & finput, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void VolumetricConvolutionMM_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void VolumetricConvolutionMM_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & finput, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH, Scalar scale) ;
virtual void VolumetricConvolutionMM_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & finput, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH, Scalar scale) ;
virtual void VolumetricFractionalMaxPooling_updateOutput(const Tensor & input, const Tensor & output, int outputT, int outputW, int outputH, int poolSizeT, int poolSizeW, int poolSizeH, const Tensor & indices, const Tensor & randomSamples) ;
virtual void VolumetricFractionalMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int outputT, int outputW, int outputH, int poolSizeT, int poolSizeW, int poolSizeH, const Tensor & indices) ;
virtual void VolumetricFullConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH, int aT, int aW, int aH) ;
virtual void VolumetricFullConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH, int aT, int aW, int aH) ;
virtual void VolumetricFullConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH, int aT, int aW, int aH) ;
virtual void VolumetricFullConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH, int aT, int aW, int aH, Scalar scale) ;
virtual void VolumetricFullConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & finput, const Tensor & fgradInput, int dT, int dW, int dH, int pT, int pW, int pH, int aT, int aW, int aH, Scalar scale) ;
virtual void VolumetricDilatedConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & bias, const Tensor & columns, const Tensor & ones, int kT, int kW, int kH, int dT, int dW, int dH, int padT, int padW, int padH, int dilationT, int dilationW, int dilationH) ;
virtual void VolumetricDilatedConvolution_updateOutput(const Tensor & input, const Tensor & output, const Tensor & weight, const Tensor & columns, const Tensor & ones, int kT, int kW, int kH, int dT, int dW, int dH, int padT, int padW, int padH, int dilationT, int dilationW, int dilationH) ;
virtual void VolumetricDilatedConvolution_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & weight, const Tensor & gradColumns, int kT, int kW, int kH, int dT, int dW, int dH, int padT, int padW, int padH, int dilationT, int dilationW, int dilationH) ;
virtual void VolumetricDilatedConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & gradBias, const Tensor & columns, const Tensor & ones, int kT, int kW, int kH, int dT, int dW, int dH, int padT, int padW, int padH, int dilationT, int dilationW, int dilationH, Scalar scale) ;
virtual void VolumetricDilatedConvolution_accGradParameters(const Tensor & input, const Tensor & gradOutput, const Tensor & gradWeight, const Tensor & columns, const Tensor & ones, int kT, int kW, int kH, int dT, int dW, int dH, int padT, int padW, int padH, int dilationT, int dilationW, int dilationH, Scalar scale) ;
virtual void VolumetricMaxPooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH, bool ceilMode) ;
virtual void VolumetricMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH, bool ceilMode) ;
virtual void VolumetricDilatedMaxPooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH, int dilationT, int dilationW, int dilationH, bool ceilMode) ;
virtual void VolumetricDilatedMaxPooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices, int kT, int kW, int kH, int dT, int dW, int dH, int pT, int pW, int pH, int dilationT, int dilationW, int dilationH, bool ceilMode) ;
virtual void VolumetricMaxUnpooling_updateOutput(const Tensor & input, const Tensor & output, const Tensor & indices, int oT, int oW, int oH, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void VolumetricMaxUnpooling_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & indices, int oT, int oW, int oH, int dT, int dW, int dH, int pT, int pW, int pH) ;
virtual void SpatialReflectionPadding_updateOutput(const Tensor & input, const Tensor & output, int pad_l, int pad_r, int pad_t, int pad_b) ;
virtual void SpatialReflectionPadding_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int pad_l, int pad_r, int pad_t, int pad_b) ;
virtual void SpatialReplicationPadding_updateOutput(const Tensor & input, const Tensor & output, int pad_l, int pad_r, int pad_t, int pad_b) ;
virtual void SpatialReplicationPadding_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int pad_l, int pad_r, int pad_t, int pad_b) ;
virtual void VolumetricReplicationPadding_updateOutput(const Tensor & input, const Tensor & output, int pleft, int pright, int ptop, int pbottom, int pfront, int pback) ;
virtual void VolumetricReplicationPadding_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int pleft, int pright, int ptop, int pbottom, int pfront, int pback) ;
virtual void VolumetricUpSamplingNearest_updateOutput(const Tensor & input, const Tensor & output, int scale_factor) ;
virtual void VolumetricUpSamplingNearest_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, int scale_factor) ;
virtual void VolumetricUpSamplingTrilinear_updateOutput(const Tensor & input, const Tensor & output, int outputDepth, int outputHeight, int outputWidth) ;
virtual void VolumetricUpSamplingTrilinear_updateGradInput(const Tensor & gradOutput, const Tensor & gradInput, int nbatch, int nchannels, int inputDepth, int inputHeight, int inputWidth, int outputDepth, int outputHeight, int outputWidth) ;
virtual void SpatialCrossMapLRN_updateOutput(const Tensor & input, const Tensor & output, const Tensor & scale, int size, Scalar alpha, Scalar beta, Scalar k) ;
virtual void SpatialCrossMapLRN_updateGradInput(const Tensor & input, const Tensor & gradOutput, const Tensor & gradInput, const Tensor & scale, const Tensor & output, int size, Scalar alpha, Scalar beta, Scalar k) ;
protected:
Context* context;
};
}