-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain_evaluate__loadOldLarge.py
340 lines (240 loc) · 12.6 KB
/
main_evaluate__loadOldLarge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import numpy as np
import h5py
import sklearn.metrics
import matplotlib.pyplot as plt
# File helpers
def mkdir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def save_arr(arr, specialname = ""):
suceeded = False
while not suceeded:
try:
mkdir("/scratch/ruzicka/python_projects_large/ChangeDetectionProject_files/"+"debuggerstuffs")
hdf5_path = "/scratch/ruzicka/python_projects_large/ChangeDetectionProject_files/"+"debuggerstuffs/savedarr"+specialname+".h5"
hdf5_file = h5py.File(hdf5_path, mode='w')
hdf5_file.create_dataset("arr", data=arr, dtype="float32")
hdf5_file.close()
#print("Saved arr to:", hdf5_path)
suceeded = True
except Exception as e:
print("exception, retrying e=",e)
suceeded = False
def load_arr(specialname = ""):
suceeded = False
while not suceeded:
try:
hdf5_path = "/scratch/ruzicka/python_projects_large/ChangeDetectionProject_files/"+"debuggerstuffs/savedarr"+specialname+".h5"
hdf5_file = h5py.File(hdf5_path, "r")
arr = hdf5_file['arr'][:]
hdf5_file.close()
suceeded = True
except Exception as e:
print("exception, retrying e=",e)
suceeded = False
return arr
def mask_label_into_class_label(mask_labels, img_resolution=256, bigger_than_percent=3.0):
array_of_number_of_change_pixels = []
for mask in mask_labels:
number_of_ones = np.count_nonzero(mask.flatten()) # << loading takes care of this 0 vs non-zero
array_of_number_of_change_pixels.append(number_of_ones)
save_arr(array_of_number_of_change_pixels, "BALANCING")
array_of_number_of_change_pixels = load_arr("BALANCING")
array_of_number_of_change_pixels = array_of_number_of_change_pixels / (
img_resolution * img_resolution) * 100.0 # percentage of image changed
class_labels = []
for value in array_of_number_of_change_pixels:
is_change = value > bigger_than_percent
class_labels.append(int(is_change))
return np.array(class_labels)
def human_legible_tiles_report(predicted_orig, labels_orig, wanted_recall, thresholds):
labels = np.array(labels_orig, copy=True)
test_Tiles = mask_label_into_class_label(labels)
arr_gts = test_Tiles.flatten()
N = len(arr_gts)
# worst case scenario:
best_recall_cost = N
best_recall_idx = 0
recalls = []
for i, thr in reversed(list(enumerate(thresholds))):
r = 0
predictions_thresholded = np.array(predicted_orig, copy=True)
for image in predictions_thresholded:
image[image >= thr] = 1
image[image < thr] = 0
predicted_Tiles = mask_label_into_class_label(predictions_thresholded)
arr_predictions = predicted_Tiles.flatten()
r = sklearn.metrics.recall_score(arr_gts, arr_predictions)
recalls.append(r)
if r > wanted_recall:
# cost = how many tiles we have to check = TP+FP
conf = sklearn.metrics.confusion_matrix(arr_gts, arr_predictions)
TP = conf[1][1]
TN = conf[0][0]
FP = conf[0][1]
FN = conf[1][0]
#N = TP + TN + FP + FN
cost_r = (TP + FP)
if cost_r <= best_recall_cost:
best_recall_cost = cost_r
best_recall_idx = i
cost_perc = 100*(best_recall_cost/N)
report_str = "If we want the recall to be better than "+str(wanted_recall)+\
", we need to set the threshold to be = "+str(thresholds[best_recall_idx])+" which will give us " \
"recall of "+str(recalls[best_recall_idx])+" while the number of tiles needed to check is "+\
str(best_recall_cost)+" from the worst case scenario "+str(N)+" (that's "+str(np.round(cost_perc, 2))+"%).\n\n"
print(report_str)
return report_str, cost_perc
def human_legible_as_a_plot(predicted_orig, labels_orig, thresholds, plot_filename=""):
# Plot x=wanted_recall, y=cost (as % of the orig dataset needed to check)
ys = []
wanted_txt = ""
for thr in thresholds:
wanted_recall = thr
txt, cost_perc = human_legible_tiles_report(predicted_orig, labels_orig, wanted_recall, thresholds)
wanted_txt += txt
ys.append(cost_perc)
xs = thresholds
plt.figure() # figsize=(w, h)
print("xs", len(xs), xs)
print("ys", len(ys), ys)
lw = 2
plt.title('Cost for given wanted recall')
plt.xlabel('wanted recall')
plt.ylabel('cost (in percents of the original dataset)')
plt.plot(xs, ys, color='red', marker='o', lw=lw, label="Cost")
plt.legend()
plt.ylim(0.0, 100.0) # in percent
plt.savefig(plot_filename+'_Costs.png')
plt.close()
return wanted_txt, xs, ys
model_idx = 0 # 0 to 5?
for model_idx in [2, 3, 4]: # 0 and 1 are done
path_large_files_backup_sol = "/scratch/ruzicka/python_projects_large/ChangeDetectionProject_files/main_eval_mem_issues/"
folder_name = "weightsModel2_cleanManual_100ep_ImagenetWgenetW_resnet50-16batch_Augmentation1to1_ClassWeights1to3_TestVal_[KFold_"+str(model_idx)+"z5]"
if not os.path.exists(path_large_files_backup_sol):
os.makedirs(path_large_files_backup_sol)
if not os.path.exists(path_large_files_backup_sol + folder_name + "/"):
os.makedirs(path_large_files_backup_sol + folder_name + "/")
predicted_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_predicted_total.npy")
gts_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_gts_total.npy")
statistics = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_statistics_total.npy")
mask_stats, tiles_stats = statistics
tiles_best_thr, tiles_selected_recall, tiles_selected_precision, tiles_selected_accuracy, tiles_selected_f1 = tiles_stats
pixels_best_thr, pixels_selected_recall, pixels_selected_precision, pixels_selected_accuracy, pixels_selected_f1, pixels_auc = mask_stats
print("Thresholds were:")
print("tiles_best_thr=",tiles_best_thr)
print("pixels_best_thr=",pixels_best_thr)
print("predicted_total.shape=",predicted_total.shape)
print("gts_total.shape=",gts_total.shape)
# PER TILE! ====================
threshold = tiles_best_thr
ground_truths_classlabels = mask_label_into_class_label(gts_total)
del gts_total
predicted_total_thresholded = np.array(predicted_total)
del predicted_total
for image in predicted_total_thresholded:
image[image >= threshold] = 1
image[image < threshold] = 0
predicted_total_classlabels = mask_label_into_class_label(predicted_total_thresholded)
del predicted_total_thresholded
print("in the middle we have:", len(predicted_total_classlabels), len(ground_truths_classlabels))
tiles_accuracy = sklearn.metrics.accuracy_score(ground_truths_classlabels, predicted_total_classlabels)
print("tiles_accuracy=", tiles_accuracy)
tiles_precision = sklearn.metrics.precision_score(ground_truths_classlabels, predicted_total_classlabels)
print("tiles_precision=", tiles_precision)
tiles_recall = sklearn.metrics.recall_score(ground_truths_classlabels, predicted_total_classlabels)
print("tiles_recall=", tiles_recall)
tiles_f1 = sklearn.metrics.f1_score(ground_truths_classlabels, predicted_total_classlabels)
print("tiles_f1=", tiles_f1)
# BONUS STATS ON TILES === conf, TPR and FPR
labels = ["no change", "change"]
report = str(sklearn.metrics.classification_report(ground_truths_classlabels, predicted_total_classlabels, target_names=labels))
print(report)
conf = sklearn.metrics.confusion_matrix(ground_truths_classlabels, predicted_total_classlabels)
# Thus in binary classification, the count of true negatives is
# :math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is
# :math:`C_{1,1}` and false positives is :math:`C_{0,1}`.
conf_str = str(conf)
conf_str += str("\nas [[TN FP], [FN TP]]\nTP "+str(conf[1][1])+" \t ... correctly classified as a change.\n" \
"TN "+str(conf[0][0])+"\t ... correctly classified as a no-change.\n" \
"FP "+str(conf[0][1])+"\t ... classified as change while it's not.\n" \
"FN "+str(conf[1][0])+"\t ... classified as no-change while it is one.")
TP = conf[1][1]
TN = conf[0][0]
FP = conf[0][1]
FN = conf[1][0]
# TPR (True Positive Rate) = # True positives / # positives = Recall = TP / (TP+FN)
# FPR (False Positive Rate) = # False Positives / # negatives = FP / (FP+TN)
tiles_TruePositiveRate = TP / (TP+FN)
tiles_FalsePositiveRate = FP / (FP+TN)
conf_str += "TruePositiveRate = TP / (TP+FN) = "+str(tiles_TruePositiveRate)+"\n"
conf_str += "FalsePositiveRate = FP / (FP+TN) = "+str(tiles_FalsePositiveRate)+"\n"
print(conf_str)
# BONUS STATS ON TILES === annotation cost
predicted_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_predicted_total.npy")
gts_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_gts_total.npy")
#threshold_fineness = 0.05
#thresholds = np.arange(0.0, 1.0+threshold_fineness, threshold_fineness)
threshold_fineness = 0.01
thresholds = np.arange(0.75, 1.0+threshold_fineness, threshold_fineness)
_, AnnotCosts_xs, AnnotCosts_ys = human_legible_as_a_plot(predicted_total, gts_total, thresholds, plot_filename=path_large_files_backup_sol + folder_name + "/")
# PER PIXEL! ====================
pixels_auc = 0
pixels_accuracy = 0
pixels_precision = 0
pixels_recall = 0
pixels_f1 = 0
# """
predicted_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_predicted_total.npy")
gts_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_gts_total.npy")
# Independently AUC
print("calculating flattens...")
#unthresholded_flat = predicted_total.flatten()
#gts_flat = gts_total.flatten()
unthresholded_flat = predicted_total.ravel()
gts_flat = gts_total.ravel()
del predicted_total
del gts_total
print("calculating auc...")
pixels_auc = sklearn.metrics.roc_auc_score(gts_flat, unthresholded_flat)
print("pixels_auc=", pixels_auc)
del unthresholded_flat
del gts_flat
predicted_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_predicted_total.npy")
gts_total = np.load(path_large_files_backup_sol + folder_name + "/" + "BatchI-" + str(model_idx) + "_gts_total.npy")
#pixels_auc = 0
# Then the rest of the stats (recall, acc, prec, f1)
threshold = pixels_best_thr
#del gts_total
predicted_total_thresholded = np.array(predicted_total)
del predicted_total
for image in predicted_total_thresholded:
image[image >= threshold] = 1
image[image < threshold] = 0
#ground_truths_flat = gts_total.flatten()
#predicted_flat = predicted_total_thresholded.flatten()
ground_truths_flat = gts_total.ravel()
predicted_flat = predicted_total_thresholded.ravel()
del gts_total
del predicted_total_thresholded
print("in the middle we have:", len(predicted_flat), len(ground_truths_flat))
pixels_accuracy = sklearn.metrics.accuracy_score(ground_truths_flat, predicted_flat)
print("pixels_accuracy=", pixels_accuracy)
pixels_precision = sklearn.metrics.precision_score(ground_truths_flat, predicted_flat)
print("pixels_precision=", pixels_precision)
pixels_recall = sklearn.metrics.recall_score(ground_truths_flat, predicted_flat)
print("pixels_recall=", pixels_recall)
pixels_f1 = sklearn.metrics.f1_score(ground_truths_flat, predicted_flat)
print("pixels_f1=", pixels_f1)
# """
statistics_pixels = pixels_recall, pixels_precision, pixels_accuracy, pixels_f1, pixels_auc
statistics_tiles = tiles_recall, tiles_precision, tiles_accuracy, tiles_f1, tiles_TruePositiveRate, tiles_FalsePositiveRate, AnnotCosts_xs, AnnotCosts_ys
statistics_we_care_about = statistics_pixels, statistics_tiles
statistics_we_care_about = np.asarray(statistics_we_care_about)
np.save(path_large_files_backup_sol + folder_name + "/"+"calculated_pixel_statistics_1PERCPER.npy", statistics_we_care_about)
file = open(path_large_files_backup_sol + folder_name + "/"+"report_1PERCPER.txt", "w")
file.write(report+"\n")
file.write(conf_str+"\n")
file.close()