-
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Interface.C
599 lines (513 loc) · 23.3 KB
/
Interface.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#include "Interface.H"
#include "Utilities.H"
#include "faceTriangulation.H"
#include "cellSet.H"
using namespace Foam;
preciceAdapter::Interface::Interface(
precice::Participant& precice,
const fvMesh& mesh,
std::string meshName,
std::string locationsType,
std::vector<std::string> patchNames,
std::vector<std::string> cellSetNames,
bool meshConnectivity,
bool restartFromDeformed,
const std::string& namePointDisplacement,
const std::string& nameCellDisplacement)
: precice_(precice),
meshName_(meshName),
patchNames_(patchNames),
cellSetNames_(cellSetNames),
meshConnectivity_(meshConnectivity),
restartFromDeformed_(restartFromDeformed)
{
dim_ = precice_.getMeshDimensions(meshName);
if (dim_ == 2 && meshConnectivity_ == true)
{
DEBUG(adapterInfo("meshConnectivity is currently only supported for 3D cases. \n"
"You might set up a 3D case and restrict the 3rd dimension by z-dead = true. \n"
"Have a look in the adapter documentation for detailed information.",
"warning"));
}
if (locationsType == "faceCenters" || locationsType == "faceCentres")
{
locationType_ = LocationType::faceCenters;
}
else if (locationsType == "faceNodes")
{
locationType_ = LocationType::faceNodes;
}
else if (locationsType == "volumeCenters" || locationsType == "volumeCentres")
{
locationType_ = LocationType::volumeCenters;
}
else
{
adapterInfo("Interface points location type \""
"locations = "
+ locationsType + "\" is invalid.",
"error-deferred");
}
// For every patch that participates in the coupling
for (uint j = 0; j < patchNames.size(); j++)
{
// Get the patchID
int patchID = mesh.boundaryMesh().findPatchID(patchNames.at(j));
// Throw an error if the patch was not found
if (patchID == -1)
{
FatalErrorInFunction
<< "ERROR: Patch '"
<< patchNames.at(j)
<< "' does not exist."
<< exit(FatalError);
}
// Add the patch in the list
patchIDs_.push_back(patchID);
}
// Configure the mesh (set the data locations)
configureMesh(mesh, namePointDisplacement, nameCellDisplacement);
}
void preciceAdapter::Interface::configureMesh(const fvMesh& mesh, const std::string& namePointDisplacement, const std::string& nameCellDisplacement)
{
// The way we configure the mesh differs between meshes based on face centers
// and meshes based on face nodes.
// TODO: Reduce code duplication. In the meantime, take care to update
// all the branches.
if (locationType_ == LocationType::faceCenters)
{
// Count the data locations for all the patches
for (uint j = 0; j < patchIDs_.size(); j++)
{
numDataLocations_ +=
mesh.boundaryMesh()[patchIDs_.at(j)].faceCentres().size();
}
DEBUG(adapterInfo("Number of face centres: " + std::to_string(numDataLocations_)));
// In case we want to perform the reset later on, look-up the corresponding data field name
Foam::volVectorField const* cellDisplacement = nullptr;
if (mesh.foundObject<volVectorField>(nameCellDisplacement))
cellDisplacement =
&mesh.lookupObject<volVectorField>(nameCellDisplacement);
// Array of the mesh vertices.
// One mesh is used for all the patches and each vertex has 3D coordinates.
std::vector<double> vertices(dim_ * numDataLocations_);
// Array of the indices of the mesh vertices.
// Each vertex has one index, but three coordinates.
vertexIDs_.resize(numDataLocations_);
// Initialize the index of the vertices array
int verticesIndex = 0;
// Get the locations of the mesh vertices (here: face centers)
// for all the patches
for (uint j = 0; j < patchIDs_.size(); j++)
{
// Get the face centers of the current patch
vectorField faceCenters =
mesh.boundaryMesh()[patchIDs_.at(j)].faceCentres();
// Move the interface according to the current values of the cellDisplacement field,
// to account for any displacements accumulated before restarting the simulation.
// This is information that OpenFOAM reads from its result/restart files.
// If the simulation is not restarted, the displacement should be zero and this line should have no effect.
if (cellDisplacement != nullptr && !restartFromDeformed_)
faceCenters -= cellDisplacement->boundaryField()[patchIDs_.at(j)];
// Assign the (x,y,z) locations to the vertices
for (int i = 0; i < faceCenters.size(); i++)
for (unsigned int d = 0; d < dim_; ++d)
vertices[verticesIndex++] = faceCenters[i][d];
// Check if we are in the right layer in case of preCICE dimension 2
// If there is at least one node with a different z-coordinate, then the (2D) geometry is not on the xy-plane, as required.
if (dim_ == 2)
{
const pointField faceNodes =
mesh.boundaryMesh()[patchIDs_.at(j)].localPoints();
const auto faceNodesSize = faceNodes.size();
//Allocate memory for z-coordinates
std::array<double, 2> z_location({0, 0});
constexpr unsigned int z_axis = 2;
// Find out about the existing planes
// Store z-coordinate of the first layer
if (faceNodesSize > 0)
{
z_location[0] = faceNodes[0][z_axis];
}
// Go through the remaining points until we find the second z-coordinate
// and store it (there are only two allowed in case we are in the xy-layer)
for (int i = 0; i < faceNodesSize; i++)
{
if (z_location[0] == faceNodes[i][z_axis])
{
continue;
}
else
{
z_location[1] = faceNodes[i][z_axis];
break;
}
}
// Check if the z-coordinates of all nodes match the z-coordinates we have collected above
for (int i = 0; i < faceNodesSize; i++)
{
if (z_location[0] == faceNodes[i][z_axis] || z_location[1] == faceNodes[i][z_axis])
{
continue;
}
else
{
adapterInfo("It seems like you are using preCICE in 2D and your geometry is not located int the xy-plane. "
"The OpenFOAM adapter implementation supports preCICE 2D cases only with the z-axis as out-of-plane direction."
"Please rotate your geometry so that the geometry is located in the xy-plane."
"If you are running a 2D axisymmetric case just ignore this.",
"warning");
}
}
}
}
// Pass the mesh vertices information to preCICE
precice_.setMeshVertices(meshName_, vertices, vertexIDs_);
}
else if (locationType_ == LocationType::faceNodes)
{
// Count the data locations for all the patches
for (uint j = 0; j < patchIDs_.size(); j++)
{
numDataLocations_ +=
mesh.boundaryMesh()[patchIDs_.at(j)].localPoints().size();
}
DEBUG(adapterInfo("Number of face nodes: " + std::to_string(numDataLocations_)));
// In case we want to perform the reset later on, look-up the corresponding data field name
Foam::pointVectorField const* pointDisplacement = nullptr;
if (mesh.foundObject<pointVectorField>(namePointDisplacement))
pointDisplacement =
&mesh.lookupObject<pointVectorField>(namePointDisplacement);
// Array of the mesh vertices.
// One mesh is used for all the patches and each vertex has 3D coordinates.
std::vector<double> vertices(dim_ * numDataLocations_);
// Array of the indices of the mesh vertices.
// Each vertex has one index, but three coordinates.
vertexIDs_.resize(numDataLocations_);
// Initialize the index of the vertices array
int verticesIndex = 0;
// Map between OpenFOAM vertices and preCICE vertex IDs
std::map<std::tuple<double, double, double>, int> verticesMap;
// Get the locations of the mesh vertices (here: face nodes)
// for all the patches
for (uint j = 0; j < patchIDs_.size(); j++)
{
// Get the face nodes of the current patch
// TODO: Check if this is correct.
// TODO: Check if this behaves correctly in parallel.
// TODO: Check if this behaves correctly with multiple, connected patches.
// TODO: Maybe this should be a pointVectorField?
pointField faceNodes =
mesh.boundaryMesh()[patchIDs_.at(j)].localPoints();
// Similar to the cell displacement above:
// Move the interface according to the current values of the cellDisplacement field,
// to account for any displacements accumulated before restarting the simulation.
// This is information that OpenFOAM reads from its result/restart files.
// If the simulation is not restarted, the displacement should be zero and this line should have no effect.
if (pointDisplacement != nullptr && !restartFromDeformed_)
{
const vectorField& resetField = refCast<const vectorField>(
pointDisplacement->boundaryField()[patchIDs_.at(j)]);
faceNodes -= resetField;
}
// Assign the (x,y,z) locations to the vertices
// TODO: Ensure consistent order when writing/reading
for (int i = 0; i < faceNodes.size(); i++)
{
for (unsigned int d = 0; d < dim_; ++d)
{
vertices[verticesIndex++] = faceNodes[i][d];
}
}
}
// Pass the mesh vertices information to preCICE
precice_.setMeshVertices(meshName_, vertices, vertexIDs_);
if (meshConnectivity_)
{
for (std::size_t i = 0; i < vertexIDs_.size(); ++i)
{
verticesMap.emplace(std::make_tuple(vertices[3 * i], vertices[3 * i + 1], vertices[3 * i + 2]), vertexIDs_[i]);
}
for (uint j = 0; j < patchIDs_.size(); j++)
{
// Define triangles
// This is done in the following way:
// We get a list of faces, which belong to this patch, and triangulate each face
// using the faceTriangulation object.
// Afterwards, we store the coordinates of the triangulated faces in order to use
// the preCICE function "getMeshVertexIDsFromPositions". This function returns
// for each point the respective preCICE related ID.
// These IDs are consequently used for the preCICE function "setMeshTriangleWithEdges",
// which defines edges and triangles on the interface. This connectivity information
// allows preCICE to provide a nearest-projection mapping.
// Since data is now related to nodes, volume fields (e.g. heat flux) needs to be
// interpolated in the data classes (e.g. CHT)
// Define constants
const int triaPerQuad = 2;
const int nodesPerTria = 3;
// Get the list of faces and coordinates at the interface patch
const List<face> faceField = mesh.boundaryMesh()[patchIDs_.at(j)].localFaces();
Field<point> pointCoords = mesh.boundaryMesh()[patchIDs_.at(j)].localPoints();
// Subtract the displacement part in case we have deformation
if (pointDisplacement != nullptr && !restartFromDeformed_)
{
const vectorField& resetField = refCast<const vectorField>(
pointDisplacement->boundaryField()[patchIDs_.at(j)]);
pointCoords -= resetField;
}
//Array to store the IDs we get from preCICE
std::vector<int> triVertIDs;
triVertIDs.reserve(faceField.size() * triaPerQuad * nodesPerTria);
// Triangulate all faces and collect set of nodes that form triangles,
// which are used to set mesh triangles in preCICE.
forAll(faceField, facei)
{
const face& faceQuad = faceField[facei];
// Triangulate the face
faceTriangulation faceTri(pointCoords, faceQuad, false);
// Iterate over all triangles generated out of each (quad) face
for (uint triIndex = 0; triIndex < triaPerQuad; triIndex++)
{
// Get the vertex that corresponds to the x,y,z coordinates of each node of a triangle
for (uint nodeIndex = 0; nodeIndex < nodesPerTria; nodeIndex++)
{
triVertIDs.push_back(verticesMap.at(std::make_tuple(pointCoords[faceTri[triIndex][nodeIndex]][0], pointCoords[faceTri[triIndex][nodeIndex]][1], pointCoords[faceTri[triIndex][nodeIndex]][2])));
}
}
}
DEBUG(adapterInfo("Number of triangles: " + std::to_string(faceField.size() * triaPerQuad)));
//Set Triangles
precice_.setMeshTriangles(meshName_, triVertIDs);
}
}
}
else if (locationType_ == LocationType::volumeCenters)
{
// The volume coupling implementation considers the mesh points in the volume and
// on the boundary patches in order to take the boundary conditions into account
// Get the cell labels of the overlapping region
std::vector<labelList> overlapCells;
if (!cellSetNames_.empty())
{
// For every cellSet that participates in the coupling
for (uint j = 0; j < cellSetNames_.size(); j++)
{
// Create a cell set
cellSet overlapRegion(mesh, cellSetNames_[j]);
// Add the cells IDs to the vector and count how many overlap cells the interface has
overlapCells.push_back(overlapRegion.toc());
numDataLocations_ += overlapCells[j].size();
}
}
else
{
numDataLocations_ = mesh.C().size();
}
// Count the data locations for all the patches
// and add those to the previously determined number of mesh points in the volume
for (uint j = 0; j < patchIDs_.size(); j++)
{
numDataLocations_ +=
mesh.boundaryMesh()[patchIDs_.at(j)].faceCentres().size();
}
DEBUG(adapterInfo("Number of coupling volumes: " + std::to_string(numDataLocations_)));
// Array of the mesh vertices.
// One mesh is used for all the patches and each vertex has 3D coordinates.
std::vector<double> vertices(dim_ * numDataLocations_);
// Array of the indices of the mesh vertices.
// Each vertex has one index, but three coordinates.
vertexIDs_.resize(numDataLocations_);
// Initialize the index of the vertices array
int verticesIndex = 0;
if (!cellSetNames_.empty())
{
// for all the overlapping cells (cellSets)
for (uint j = 0; j < cellSetNames_.size(); j++)
{
// Get the cell centres of the current cellSet.
const labelList& cells = overlapCells.at(j);
// Get the coordinates of the cells of the current cellSet.
for (int i = 0; i < cells.size(); i++)
{
vertices[verticesIndex++] = mesh.C().internalField()[cells[i]].x();
vertices[verticesIndex++] = mesh.C().internalField()[cells[i]].y();
if (dim_ == 3)
{
vertices[verticesIndex++] = mesh.C().internalField()[cells[i]].z();
}
}
}
}
else
{
const vectorField& CellCenters = mesh.C();
for (int i = 0; i < CellCenters.size(); i++)
{
vertices[verticesIndex++] = CellCenters[i].x();
vertices[verticesIndex++] = CellCenters[i].y();
if (dim_ == 3)
{
vertices[verticesIndex++] = CellCenters[i].z();
}
}
}
// Get the locations of the mesh vertices (here: face centers)
// for all the patches
for (uint j = 0; j < patchIDs_.size(); j++)
{
// Get the face centers of the current patch
const vectorField faceCenters =
mesh.boundaryMesh()[patchIDs_.at(j)].faceCentres();
// Assign the (x,y,z) locations to the vertices
for (int i = 0; i < faceCenters.size(); i++)
{
vertices[verticesIndex++] = faceCenters[i].x();
vertices[verticesIndex++] = faceCenters[i].y();
if (dim_ == 3)
{
vertices[verticesIndex++] = faceCenters[i].z();
}
}
}
// Pass the mesh vertices information to preCICE
precice_.setMeshVertices(meshName_, vertices, vertexIDs_);
}
}
void preciceAdapter::Interface::addCouplingDataWriter(
std::string dataName,
CouplingDataUser* couplingDataWriter)
{
// Set the data name (from preCICE)
couplingDataWriter->setDataName(dataName);
// Set the patchIDs of the patches that form the interface
couplingDataWriter->setPatchIDs(patchIDs_);
// Set the names of the cell sets to be coupled (for volume coupling)
couplingDataWriter->setCellSetNames(cellSetNames_);
// Set the location type in the CouplingDataUser class
couplingDataWriter->setLocationsType(locationType_);
// Set the location type in the CouplingDataUser class
couplingDataWriter->checkDataLocation(meshConnectivity_);
// Initilaize class specific data
couplingDataWriter->initialize();
// Add the CouplingDataUser to the list of writers
couplingDataWriters_.push_back(couplingDataWriter);
}
void preciceAdapter::Interface::addCouplingDataReader(
std::string dataName,
preciceAdapter::CouplingDataUser* couplingDataReader)
{
// Set the patchIDs of the patches that form the interface
couplingDataReader->setDataName(dataName);
// Add the CouplingDataUser to the list of readers
couplingDataReader->setPatchIDs(patchIDs_);
// Set the location type in the CouplingDataUser class
couplingDataReader->setLocationsType(locationType_);
// Set the names of the cell sets to be coupled (for volume coupling)
couplingDataReader->setCellSetNames(cellSetNames_);
// Check, if the current location type is supported by the data type
couplingDataReader->checkDataLocation(meshConnectivity_);
// Initilaize class specific data
couplingDataReader->initialize();
// Add the CouplingDataUser to the list of readers
couplingDataReaders_.push_back(couplingDataReader);
}
void preciceAdapter::Interface::createBuffer()
{
// Will the interface buffer need to store 3D vector data?
bool needsVectorData = false;
int dataBufferSize = 0;
// Check all the coupling data readers
for (uint i = 0; i < couplingDataReaders_.size(); i++)
{
if (couplingDataReaders_.at(i)->hasVectorData())
{
needsVectorData = true;
}
}
// Check all the coupling data writers
for (uint i = 0; i < couplingDataWriters_.size(); i++)
{
if (couplingDataWriters_.at(i)->hasVectorData())
{
needsVectorData = true;
}
}
// Set the appropriate buffer size
if (needsVectorData)
{
dataBufferSize = dim_ * numDataLocations_;
}
else
{
dataBufferSize = numDataLocations_;
}
// Create the data buffer
// An interface has only one data buffer, which is shared between several
// CouplingDataUsers.
// TODO: Check (write tests) if this works properly when we have multiple
// scalar and vector coupling data users in an interface. With the current
// preCICE implementation, it should work as, when writing scalars,
// it should only use the first 1/3 elements of the buffer.
dataBuffer_.resize(dataBufferSize);
}
void preciceAdapter::Interface::readCouplingData(double relativeReadTime)
{
// Make every coupling data reader read
for (uint i = 0; i < couplingDataReaders_.size(); i++)
{
// Pointer to the current reader
preciceAdapter::CouplingDataUser*
couplingDataReader = couplingDataReaders_.at(i);
// Make preCICE read vector or scalar data
// and fill the adapter's buffer
std::size_t nReadData = vertexIDs_.size() * precice_.getDataDimensions(meshName_, couplingDataReader->dataName());
// We could add a sanity check here
// nReadData == vertexIDs_.size() * (1 + (dim_ - 1) * static_cast<int>(couplingDataReader->hasVectorData()));
precice_.readData(
meshName_,
couplingDataReader->dataName(),
vertexIDs_,
relativeReadTime,
{dataBuffer_.data(), nReadData});
// Read the received data from the buffer
couplingDataReader->read(dataBuffer_.data(), dim_);
}
}
void preciceAdapter::Interface::writeCouplingData()
{
// TODO: wrap around isWriteDataRequired
// Does the participant need to write data or is it subcycling?
// if (precice_.isWriteDataRequired(computedTimestepLength))
// {
// Make every coupling data writer write
for (uint i = 0; i < couplingDataWriters_.size(); i++)
{
// Pointer to the current reader
preciceAdapter::CouplingDataUser*
couplingDataWriter = couplingDataWriters_.at(i);
// Write the data into the adapter's buffer
auto nWrittenData = couplingDataWriter->write(dataBuffer_.data(), meshConnectivity_, dim_);
// Make preCICE write vector or scalar data
precice_.writeData(
meshName_,
couplingDataWriter->dataName(),
vertexIDs_,
{dataBuffer_.data(), nWrittenData});
}
// }
}
preciceAdapter::Interface::~Interface()
{
// Delete all the coupling data readers
for (uint i = 0; i < couplingDataReaders_.size(); i++)
{
delete couplingDataReaders_.at(i);
}
couplingDataReaders_.clear();
// Delete all the coupling data writers
for (uint i = 0; i < couplingDataWriters_.size(); i++)
{
delete couplingDataWriters_.at(i);
}
couplingDataWriters_.clear();
}