-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
executable file
·218 lines (186 loc) · 6.98 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from __future__ import print_function
import argparse
import os
import shutil
import time
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
#import torch.utils.data
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
#from torchsummary import summary
import torchvision.models as models
# from models import *
from collections import OrderedDict
from torch.autograd import Variable
from scipy.ndimage import uniform_filter1d
# import scipy as sp
from scipy import signal
import pickle
from utils.utils import Normalize
from utils.utils import calc_scores
import logging
# import models.resnet as ResNet
import utils
import matplotlib.pyplot as plt
import numpy as np
# import cv2
import sys
from EvaluationMetrics.cccmetric import ccc
import math
from losses.CCC import CCC
#import wandb
def validate(val_loader, model, criterion, epoch, cam):
# switch to evaluate mode
global Val_acc
global best_Val_acc
global best_Val_acc_epoch
#model.eval()
model.eval()
cam.eval()
PrivateTest_loss = 0
correct = 0
total = 0
running_val_loss = 0
running_val_accuracy = 0
vout = []
vtar = []
aout = []
atar = []
#torch.cuda.synchronize()
#t7 = time.time()
pred_a = dict()
pred_v = dict()
label_a = dict()
label_v = dict()
#files_dict = {}
count = 0
for batch_idx, (visualdata, audiodata, frame_ids, videos, vid_lengths, labelsV, labelsA) in tqdm(enumerate(val_loader),
total=len(val_loader), position=0, leave=True):
#if(batch_idx > 2):#int(65844/64)):
# break
#torch.cuda.synchronize()
#t8 = time.time()
#print('data loading time', t8-t7)
audiodata = audiodata.cuda()#.unsqueeze(2)
visualdata = visualdata.cuda()
#torch.cuda.synchronize()
#t9 = time.time()
with torch.no_grad():
b, seq_t, c, subseq_t, h, w = visualdata.size()
#sub_seq_len = 16
#visualdata = visual_data.view(b, c, -1, sub_seq_len, h, w)
#visual_feats = []
#aud_feats = []
visual_feats = torch.empty((b, seq_t, 25088), dtype=visualdata.dtype, device = visualdata.device)
aud_feats = torch.empty((b, seq_t, 512), dtype=visualdata.dtype, device = visualdata.device)
for i in range(visualdata.shape[0]):
#vis_dat = visualdata[i, :, :, :,:,:].transpose(0,1)
audio_feat, visualfeat, _ = model(audiodata[i,:,:,:], visualdata[i, :, :, :,:,:])
visual_feats[i,:,:] = visualfeat
aud_feats[i,:,:] = audio_feat
#visualfeat = visual_model(visualdata[i, :, :, :,:,:].transpose(0,1))#[:,-1,:]
#visualfeat, _ = torch.max(visualfeat,1)
#visual_feats.append(visualfeat)
#aud_data = audiodata[i,:,:,:]#.unsqueeze(1)
#audio_feat = audio_model(aud_data)
#aud_feats.append(audio_feat) #.squeeze(3))
#visual_feat = torch.stack(visual_feats)#.squeeze(3).squeeze(3).squeeze(3)#.transpose(1,2)
#audio_feat = torch.stack(aud_feats)#.squeeze(3)#.transpose(1,2)
#torch.cuda.synchronize()
#t8 = time.time()
#audio_feat, audio_out = audio_model(audiodata)
#audio_feat = audio_feat.squeeze(3)
#audio_feat, audio_out = audio_model(audiodata)
#visualfeat, visual_out = visual_model(visualdata)#.unsqueeze(0))
#visual_feat = visualfeat.squeeze(2).squeeze(2).squeeze(2)
#visual_feat = torch.max(visualfeat, dim = 2)[0].squeeze(2).squeeze(2)
#vis_data = visualdata.view(b*visualdata.shape[2], c, subseq_t ,h , w)
#visualfeatures, _ = visual_model(vis_data)
#visual_feat = visualfeatures.view(b, -1, visualfeatures.shape[1])
#aud_data = audiodata.view(audiodata.shape[0]*audiodata.shape[1], audiodata.shape[2], audiodata.shape[3]).unsqueeze(1)
#aud_feat, audio_out = audio_model(aud_data)
#audio_feat = aud_feat.view(b, -1, aud_feat.shape[1])
#print(audio_feat.shape)
#print(visual_feat.shape)
#audio_feat_norm = F.normalize(audio_feat, p=2, dim=2, eps=1e-12)
#visual_feat_norm = F.normalize(visual_feat, p=2, dim=2, eps=1e-12)
#audio_attfeat, visual_attfeat = cam(audio_feat, visual_feat)
#audiovisual_outs = model(audio_feat_norm, visual_feat_norm)
audiovisual_vouts,audiovisual_aouts = cam(aud_feats, visual_feats)
#outputs = audiovisual_outs.view(-1, audiovisual_outs.shape[0]*audiovisual_outs.shape[1])
#targets = labels.view(-1, labels.shape[0]*labels.shape[1]).cuda()
audiovisual_vouts = audiovisual_vouts.detach().cpu().numpy()
audiovisual_aouts = audiovisual_aouts.detach().cpu().numpy()
labelsV = labelsV.cpu().numpy()
labelsA = labelsA.cpu().numpy()
#sys.exit()
#flags = valence == -5.0
#v = np.delete(v, flags)
#a = np.delete(a, flags)
#print(len(frame_ids))
#print(len(list(zip(*vid_lengths))))
#print(len(list(zip(*videos))))
#sys.exit()
for voutputs, aoutputs, labelV, labelA, frameids, video, vid_length in zip(audiovisual_vouts, audiovisual_aouts, labelsV, labelsA, frame_ids, videos, vid_lengths):
for voutput, aoutput, labV, labA, frameid, vid, length in zip(voutputs, aoutputs, labelV, labelA, frameids, video, vid_length):
if vid not in pred_a:
if frameid>1:
print(vid)
print(length)
print("something is wrong")
sys.exit()
count = count + 1
#files_dict[vid] = [0]*length
pred_a[vid] = [0]*length
pred_v[vid] = [0]*length
label_a[vid] = [0]*length
label_v[vid] = [0]*length
if labV == -5.0:
continue
#files_dict[vid][frameid-1] = [voutput, aoutput, labV, labA]
pred_a[vid][frameid-1] = aoutput
pred_v[vid][frameid-1] = voutput
label_a[vid][frameid-1] = labA
label_v[vid][frameid-1] = labV
else:
if frameid <= length:
if labV == -5.0:
continue
#print(frameid)
#files_dict[vid][frameid-1] = [torch.tanh(output), lab]
#pred_a[vid][frameid-1] = [voutput, aoutput, labV, labA]
#files_dict[vid][frameid-1] = [voutput, aoutput, labV, labA]
pred_a[vid][frameid-1] = aoutput
pred_v[vid][frameid-1] = voutput
label_a[vid][frameid-1] = labA
label_v[vid][frameid-1] = labV
for key in pred_a.keys():
clipped_preds_v = np.clip(pred_v[key], -1.0, 1.0)
clipped_preds_a = np.clip(pred_a[key], -1.0, 1.0)
smoothened_preds_v = uniform_filter1d(clipped_preds_v, size=20, mode='constant')
smoothened_preds_a = uniform_filter1d(clipped_preds_a, size=50, mode='constant')
tars_v = label_v[key]
tars_a = label_a[key]
for i in range(len(smoothened_preds_a)):
#vout.append(np.clip(smoothened_preds_v[i], -1.0, 1.0))
#aout.append(np.clip(smoothened_preds_a[i], -1.0, 1.0))
vout.append(smoothened_preds_v[i])
aout.append(smoothened_preds_a[i])
vtar.append(tars_v[i])
atar.append(tars_a[i])
#for i in range(len(files_dict[key])):
#vout.append(np.clip(files_dict[key][i][0], -1.0, 1.0))
#aout.append(np.clip(files_dict[key][i][1], -1.0, 1.0))
#vtar.append(files_dict[key][i][2])
#atar.append(files_dict[key][i][3])
accV = ccc(np.array(vout), np.array(vtar))
accA = ccc(np.array(aout), np.array(atar))
print(accV)
print(accA)
return accV, accA