|
| 1 | +import matplotlib.pyplot as plt |
| 2 | +import numpy as np |
| 3 | +from IPython.display import clear_output |
| 4 | +from qiskit import QuantumCircuit |
| 5 | +from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B |
| 6 | +from qiskit.circuit import Parameter |
| 7 | +from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap |
| 8 | +from qiskit.utils import algorithm_globals |
| 9 | +from qiskit_machine_learning.algorithms.classifiers import ( |
| 10 | + VQC, NeuralNetworkClassifier) |
| 11 | +from qiskit_machine_learning.algorithms.regressors import ( |
| 12 | + VQR, NeuralNetworkRegressor) |
| 13 | +from qiskit_machine_learning.neural_networks import EstimatorQNN, SamplerQNN |
| 14 | + |
| 15 | +algorithm_globals.random_seed = 42 |
| 16 | + |
| 17 | +num_inputs = 2 |
| 18 | +num_samples = 20 |
| 19 | + |
| 20 | +X = 2 * np.random.rand(num_samples, num_inputs) - 1 |
| 21 | +y = np.random.choice([0, 1, 2], 100) |
| 22 | +y_one_hot = np.zeros((num_samples, 3)) |
| 23 | + |
| 24 | +for i in range(num_samples): |
| 25 | + y_one_hot[i, y[i]] = 1 |
| 26 | + |
| 27 | +for x, y_target in zip(X, y): |
| 28 | + if y_target == 1: |
| 29 | + plt.plot(x[0], x[1], "bo") |
| 30 | + else: |
| 31 | + plt.plot(x[0], x[1], "go") |
| 32 | +plt.plot([-1, 0, 1], [1, 0, -1], "--", color="black") |
| 33 | +plt.show() |
| 34 | + |
| 35 | +# construct QNN |
| 36 | +qc = QuantumCircuit(2) |
| 37 | +feature_map = ZZFeatureMap(2) |
| 38 | +ansatz = RealAmplitudes(2) |
| 39 | +qc.compose(feature_map, inplace=True) |
| 40 | +qc.compose(ansatz, inplace=True) |
| 41 | +qc.draw(output="mpl") |
| 42 | + |
0 commit comments