-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJE1000_add_solos.py
259 lines (212 loc) · 10.9 KB
/
JE1000_add_solos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Python3
""" adding solo fragments and their performers to RDF
Polina Proutskova
August 2019
"""
##############################################################
# paths
DATA_CSV = "DATA/solo_extract_meta.csv"
RDFfile = "TTL/JE_inst.ttl"
RDFnewfile = "TTL/JE_solos.ttl"
INST_LABELS = "DATA/DTLtoJE_instruments.csv"
NO_MUSICIANS_FILE = "PyLOG/JE_no_musicians_found.json"
NO_MATCHING_INSTRUMENT_FILE = "PyLOG/JE_no_matching_instrument_found.json"
MULTIPLE_MUSICIANS_FILE = "PyLOG/JE_multiple_musicians_found.json"
##############################################################
import dtlutil
# logging
import logging
MIN_LEVEL = logging.INFO
dtlutil.setup_log(MIN_LEVEL)
# create rdf graph
import rdflib
from rdflib.graph import Graph, Store, URIRef, Literal, BNode
from rdflib import plugin
from rdflib.plugins import sparql
from rdflib.namespace import RDF, FOAF, RDFS, DC, XSD
MO, TL, EVENT, OLO, DTL, initNs = dtlutil.init_namespaces()
g = dtlutil.create_graph()
dtlutil.read_in_rdf(g, RDFfile)
####################################################################
from dtlutil import *
def exists_instrument(inst):
return find_instrument(inst) != None
def find_instrument(inst):
return g.value(subject=None, predicate=DTL.dtl_inst_label, object=inst, default=None, any=False)
ALBUM_TITLES = dtlutil.get_JE_parts()
def find_performance_from_JEid(JEid):
# parse JE id
# example JE id: JE-4-077-18
idlst = JEid.split("-")
part = int(idlst[1])
cdnum = int(idlst[2])
tnum = int(idlst[3])
release_title = dtlutil.get_JE_part(part)
qstr = """SELECT ?performance ?trackt
WHERE {
?release RDF:type MO:Release .
?release DC:title "%s" .
?release MO:record ?medium .
?medium MO:record_number "%i" .
?medium MO:track ?track .
?track MO:track_number "%i" .
?track DC:title ?trackt .
?signal MO:published_as ?track .
?signal DTL:captures ?performance .
} """ %(release_title, cdnum, tnum)
logging.debug(qstr)
q = rdflib.plugins.sparql.prepareQuery(qstr, initNs)
found = g.query(q)
# found = self.find_class(q)
if found == None or len(found) == 0:
logging.warning("no RDF found for id %s", JEid)
return '', ''
elif len(found) > 1:
logging.warning("Multiple performances found for id %s:", JEid)
for row in found:
logging.warning(row)
return '',''
else:
for row in found:
performanceURI = row[0]
track_title = row[1]
logging.debug("performance found for track %s: %s", track_title, performanceURI)
return (performanceURI, track_title)
def create_time_interval(start, end, timeline=TL.UniversalTimeline):
eventnode = rdflib.BNode()
g.add( (eventnode, RDF.type, TL.Interval) )
g.add( (eventnode, TL.beginsAt, Literal(start)) )
g.add( (eventnode, TL.endsAt, Literal(end)) )
g.add( (eventnode, TL.onTimeLine, timeline) )
return eventnode
##############################################################
import csv
INSTRUMENT_LABELS = {}
with open(INST_LABELS, 'r') as csvfile:
logging.info("\nInstrument labels from file: %s", INST_LABELS)
instcsvreader = csv.reader(csvfile, delimiter=',')
instcsvreader.__next__()
for row in instcsvreader:
DTLlabel = row[1]
logging.debug("dtl label %s to be mapped to:", DTLlabel)
orig_label = row[2]
logging.debug(orig_label)
INSTRUMENT_LABELS[DTLlabel] = orig_label
#########################################################################
# main
import uuid
import datetime
with open(DATA_CSV) as csvfile:
logging.info("\nReading data from file: %s", DATA_CSV)
csvreader = csv.reader(csvfile, delimiter=',')
csvreader.__next__()
found = 0
solos_count = 0
NO_MUSICIANS = []
NO_MATCHING_INSTRUMENT = []
MULTIPLE_MUSICIANS = []
for count, row in enumerate(csvreader):
logging.info("\nprocessing row %i:", count + 1)
if row[1].startswith("JE-"):
JEid = row[1]
soloid = row[0].replace(".csv","")
instrument = row[2]
start = row[3]
end = row[4]
logging.info("JE id: %s", JEid)
logging.info("instrument: %s", instrument)
# find performance
performanceURI, track_title = find_performance_from_JEid(JEid)
if len(str(performanceURI)) > 0:
found +=1
# create solo performance
soloperformanceURI = create_uri("solo_performances", soloid)
g.add( (soloperformanceURI, RDF.type, DTL.SoloPerformance) )
g.add( (performanceURI, EVENT.sub_event, soloperformanceURI) )
g.add( (soloperformanceURI, DTL.solo_id, Literal(soloid)) )
solos_count += 1
logging.debug("created solo performance for track %s", track_title)
# add timestamps
if exists_timeline(g, performanceURI):
timelineURI = find_timeline(g, performanceURI)
else:
timelineURI = create_timeline(g, performanceURI)
logging.debug("timeline uri: %s", timelineURI)
start_xsd = start.replace(".", ":", 2)
end_xsd = end.replace(".", ":", 2)
logging.debug("start: %s, end: %s", start_xsd, end_xsd)
g.add( (soloperformanceURI, EVENT.time, create_time_interval(start_xsd, end_xsd, timelineURI)) )
# add solo instrument
je_inst_label = INSTRUMENT_LABELS[instrument]
instrumentURI = g.value(subject=None, predicate=DTL.je_inst_label, object=Literal(je_inst_label), default=None, any=False)
if instrumentURI != None:
g.add( (soloperformanceURI, DTL.solo_instrument, instrumentURI) )
logging.debug("connected instrument %s to the solo performance of track %s", instrument, track_title)
else:
logging.warning("no instrument found for instrument label %s", instrument)
# find performers
performers = g.objects(performanceURI, MO.performer)
candidates = []
exist_performers = False
for performer in performers:
exist_performers = True
perf_inst = g.value(subject=performer, predicate=DTL.instrument, object=None, default=None, any=False)
perf_inst_label = g.value(subject=perf_inst, predicate=DTL.dtl_inst_label, object=None, default=None, any=False)
musician = g.value(subject=performer, predicate=DTL.musician, object=None, default=None, any=False)
name = g.value(subject=musician, predicate=FOAF.name, object=None, default=None, any=False)
logging.debug("performer: %s, instrument: %s", name, perf_inst_label)
if str(perf_inst_label) == str(instrument):
candidates.append(performer)
logging.debug("performer: %s", name)
if len(candidates) == 1:
# one performer found - relate to solo performance
performer = candidates[0]
perf_inst = g.value(subject=performer, predicate=DTL.instrument, object=None, default=None, any=False)
perf_inst_label = g.value(subject=perf_inst, predicate=DTL.je_inst_label, object=None, default=None, any=False)
musician = g.value(subject=performer, predicate=DTL.musician, object=None, default=None, any=False)
name = g.value(subject=musician, predicate=FOAF.name, object=None, default=None, any=False)
g.add( (soloperformanceURI, DTL.solo_performer, performer) )
g.set( (soloperformanceURI, DTL.solo_instrument, perf_inst) )
logging.debug("added performer %s and instrument %s to the solo performance of track %s", name, perf_inst_label, track_title)
elif len(candidates) < 1:
if not exist_performers:
# no performers found
NO_MUSICIANS.append( (track_title, JEid, instrument) )
logging.warning("No performers found on track %s with fingerprint %s", track_title, JEid)
else:
# no performers with a matching instrument found
NO_MATCHING_INSTRUMENT.append( (track_title, JEid, instrument) )
logging.warning("No performers found playing %s on track %s with fingerprint %s", instrument, track_title, JEid)
elif len(candidates) > 1:
# multiple performers found
logging.warning("Multiple performers found playing %s on track %s with id %s:", instrument, track_title, JEid)
names_list = []
for performer in candidates:
musician = g.value(subject=performer, predicate=DTL.musician, object=None, default=None, any=False)
name = g.value(subject=musician, predicate=FOAF.name, object=None, default=None, any=False)
logging.warning("%s", name)
names_list.append(name)
MULTIPLE_MUSICIANS.append( (track_title, JEid, instrument, names_list) )
# add possible solo performers
for performer in candidates:
musician = g.value(subject=performer, predicate=DTL.musician, object=None, default=None, any=False)
name = g.value(subject=musician, predicate=FOAF.name, object=None, default=None, any=False)
g.add( (soloperformanceURI, DTL.possible_solo_performer, performer) )
logging.debug("added performer %s as a possible performer to the solo performance of track %s", name, track_title)
else:
logging.debug("non JE id, skipping row")
# stats
logging.info("\n##############\nSTATS")
logging.info("Processed %i tracks", found)
logging.info("Created %i solos", solos_count)
logging.info("No performer found: %i (%i%s)", len(NO_MUSICIANS), len(NO_MUSICIANS)/found*100, "%")
logging.info("No matching instrument found: %i (%i%s)", len(NO_MATCHING_INSTRUMENT), len(NO_MATCHING_INSTRUMENT)/found*100, "%")
logging.info("Multiple performers found: %i (%i%s)", len(MULTIPLE_MUSICIANS), len(MULTIPLE_MUSICIANS)/found*100, "%")
logging.info("##############\n")
# write problem cases to files
from dtlutil import write_json
write_json(NO_MUSICIANS, NO_MUSICIANS_FILE)
write_json(NO_MATCHING_INSTRUMENT, NO_MATCHING_INSTRUMENT_FILE)
write_json(MULTIPLE_MUSICIANS, MULTIPLE_MUSICIANS_FILE)
# write rdf
dtlutil.write_rdf(g, RDFnewfile)