-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodel.py
129 lines (116 loc) · 4.94 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import glob
import os
import torch
import torch.jit
import torch.nn as nn
class Model(torch.jit.ScriptModule):
CHECKPOINT_FILENAME_PATTERN = 'model-{}.pth'
__constants__ = ['_hidden1', '_hidden2', '_hidden3', '_hidden4', '_hidden5',
'_hidden6', '_hidden7', '_hidden8', '_hidden9', '_hidden10',
'_features', '_classifier',
'_digit_length', '_digit1', '_digit2', '_digit3', '_digit4', '_digit5']
def __init__(self):
super(Model, self).__init__()
self._hidden1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=48, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=48),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
nn.Dropout(0.2)
)
self._hidden2 = nn.Sequential(
nn.Conv2d(in_channels=48, out_channels=64, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
nn.Dropout(0.2)
)
self._hidden3 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
nn.Dropout(0.2)
)
self._hidden4 = nn.Sequential(
nn.Conv2d(in_channels=128, out_channels=160, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=160),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
nn.Dropout(0.2)
)
self._hidden5 = nn.Sequential(
nn.Conv2d(in_channels=160, out_channels=192, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=192),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
nn.Dropout(0.2)
)
self._hidden6 = nn.Sequential(
nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=192),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
nn.Dropout(0.2)
)
self._hidden7 = nn.Sequential(
nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=192),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2, padding=1),
nn.Dropout(0.2)
)
self._hidden8 = nn.Sequential(
nn.Conv2d(in_channels=192, out_channels=192, kernel_size=5, padding=2),
nn.BatchNorm2d(num_features=192),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=1, padding=1),
nn.Dropout(0.2)
)
self._hidden9 = nn.Sequential(
nn.Linear(192 * 7 * 7, 3072),
nn.ReLU()
)
self._hidden10 = nn.Sequential(
nn.Linear(3072, 3072),
nn.ReLU()
)
self._digit_length = nn.Sequential(nn.Linear(3072, 7))
self._digit1 = nn.Sequential(nn.Linear(3072, 11))
self._digit2 = nn.Sequential(nn.Linear(3072, 11))
self._digit3 = nn.Sequential(nn.Linear(3072, 11))
self._digit4 = nn.Sequential(nn.Linear(3072, 11))
self._digit5 = nn.Sequential(nn.Linear(3072, 11))
@torch.jit.script_method
def forward(self, x):
x = self._hidden1(x)
x = self._hidden2(x)
x = self._hidden3(x)
x = self._hidden4(x)
x = self._hidden5(x)
x = self._hidden6(x)
x = self._hidden7(x)
x = self._hidden8(x)
x = x.view(x.size(0), 192 * 7 * 7)
x = self._hidden9(x)
x = self._hidden10(x)
length_logits = self._digit_length(x)
digit1_logits = self._digit1(x)
digit2_logits = self._digit2(x)
digit3_logits = self._digit3(x)
digit4_logits = self._digit4(x)
digit5_logits = self._digit5(x)
return length_logits, digit1_logits, digit2_logits, digit3_logits, digit4_logits, digit5_logits
def store(self, path_to_dir, step, maximum=5):
path_to_models = glob.glob(os.path.join(path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format('*')))
if len(path_to_models) == maximum:
min_step = min([int(path_to_model.split('/')[-1][6:-4]) for path_to_model in path_to_models])
path_to_min_step_model = os.path.join(path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(min_step))
os.remove(path_to_min_step_model)
path_to_checkpoint_file = os.path.join(path_to_dir, Model.CHECKPOINT_FILENAME_PATTERN.format(step))
torch.save(self.state_dict(), path_to_checkpoint_file)
return path_to_checkpoint_file
def restore(self, path_to_checkpoint_file):
self.load_state_dict(torch.load(path_to_checkpoint_file))
step = int(path_to_checkpoint_file.split('/')[-1][6:-4])
return step