-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathred_rover_dubins.py
324 lines (253 loc) · 10 KB
/
red_rover_dubins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
++++++++++++++++++++
+ Red Rover Dubins +
++++++++++++++++++++
A version of the red rover model using the Dubins curves.
The idea is to use the Dubins model alongside interp1d and savitzky
golay filtering to create a smooth path-following algorithm.
Links:
+ https://github.com/AndrewWalker/Dubins-Curves
+ https://github.com/AndrewWalker/pydubins
+ https://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.interpolate.interp1d.html
+ http://scipy-cookbook.readthedocs.io/items/SavitzkyGolay.html
pydubins README: This software finds the shortest paths between configurations
for the Dubins' car [Dubins57], the forward only car-like vehicle with a constrained
turning radius. A good description of the equations and basic strategies for doing
this are described in section 15.3.1 "Dubins Curves" of the book "Planning Algorithms" [LaValle06].
The approach used to find paths is based on the algebraic solutions published in [Shkel01].
However, rather than using angular symmetries to improve performance, the simpler
approach to test all possible solutions is used here. This code is primarily a Cython
wrapper of https://github.com/AndrewWalker/Dubins-Curves
"""
# import red_rover_model
import numpy as np
from scipy.interpolate import interp1d # Different interface to the same function
from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
from algorithms import savitzky_golay
import matplotlib.pyplot as plt
import math
import dubins
import sys
sample_points = np.array([[ 6.55525 , 3.05472 ],
[ 6.17284 , 2.802609],
[ 5.53946 , 2.649209],
[ 4.93053 , 2.444444],
[ 4.32544 , 2.318749],
[ 3.90982 , 2.2875 ],
[ 3.51294 , 2.221875],
[ 3.09107 , 2.29375 ],
[ 2.64013 , 2.4375 ],
[ 2.275444, 2.653124],
[ 2.137945, 3.26562 ],
[ 2.15982 , 3.84375 ],
[ 2.20982 , 4.31562 ],
[ 2.334704, 4.87873 ],
[ 2.314264, 5.5047 ],
[ 2.311709, 5.9135 ],
[ 2.29638 , 6.42961 ],
[ 2.619374, 6.75021 ],
[ 3.32448 , 6.66353 ],
[ 3.31582 , 5.68866 ],
[ 3.35159 , 5.17255 ],
[ 3.48482 , 4.73125 ],
[ 3.70669 , 4.51875 ],
[ 4.23639 , 4.58968 ],
[ 4.39592 , 4.94615 ],
[ 4.33527 , 5.33862 ],
[ 3.95968 , 5.61967 ],
[ 3.56366 , 5.73976 ],
[ 3.78818 , 6.55292 ],
[ 4.27712 , 6.8283 ],
[ 4.89532 , 6.78615 ],
[ 5.35334 , 6.72433 ],
[ 5.71583 , 6.54449 ],
[ 6.13452 , 6.46019 ],
[ 6.54478 , 6.26068 ],
[ 6.7873 , 5.74615 ],
[ 6.64086 , 5.25269 ],
[ 6.45649 , 4.86206 ],
[ 6.41586 , 4.46519 ],
[ 5.44711 , 4.26519 ],
[ 5.04087 , 4.10581 ],
[ 4.70013 , 3.67405 ],
[ 4.83482 , 3.4375 ],
[ 5.34086 , 3.43394 ],
[ 5.76392 , 3.55156 ],
[ 6.37056 , 3.8778 ],
[ 6.53116 , 3.47228 ]])
simple_line = np.array([[1,1],
[2,2],
[3,3],
[4,4],
[5,5]])
def interp1d_example_1():
"""
Borrowing from algorithms/interp1d_example.py, this function
will use the same setup, but with GPS data instead of a random
set of points.
"""
# This code segment reads in a csv file of gps data to use for modeling:
# # 1. Read in GPS points from peanut field data:
# # filename = 'Data/2017-10-04/turn_test_5min_single_avg_20171004_fix_utm.csv' # input csv filename
# filename = 'Data/2017-09-20/gps_field_test_fixtopic_20170920_reduced_utm.csv'
# t_header, x_header, y_header = 'field.header.seq', 'easting', 'northing' # header declarations
# t_arr, x_arr, y_arr = red_rover_model.get_data_from_csv(filename, t_header, x_header, y_header, 2) # path arrays
# xy_pairs = zip(x_arr, y_arr) # aggregating lists to convert to np.array
# sample_points = np.array(xy_pairs) # converts [(x1,y1), (x2,y2), ..] xy_pairs to np.array type, hopefully
x, y = sample_points.T
interp_num = 8 # num pts to interpolate b/w data pts
i = np.arange(len(sample_points))
#You can try Rbf, fitpack2 method
interp_i = np.linspace(0, i.max(), interp_num * i.max())
#use interp1d to increase data points
xi = interp1d(i, x, kind='cubic')(interp_i)
yi = interp1d(i, y, kind='cubic')(interp_i)
# f = interp1d(x, y, kind='cubic')
#use this savitzky filter from http://scipy-cookbook.readthedocs.io/items/SavitzkyGolay.html
# yhat = savitzky_golay.savitzky_golay(yi, 31, 5) # window size 51, polynomial order 3
yhat = savitzky_golay.savitzky_golay(y, 5, 3)
yhat_interp = savitzky_golay.savitzky_golay(yi, 51, 5)
plot_interp1d_example(x, y, xi, yi, yhat_interp, yhat) # plot paths
def plot_interp1d_example(x, y, xi, yi, yhat_interp, yhat):
# Plot all sorts of points and lines:
# points_1, = plt.plot(xi, yi, 'mo', label='interp1d(x) vs. interp1d(y) points', markersize=5)
path_1, = plt.plot(xi, yi, 'm', label='int(x) vs. int(y)')
path_2, = plt.plot(x, yhat, 'c', label='x vs. sav(y)')
# path_3, = plt.plot(xi, yhat_interp, 'b', label='int(x) vs. sav(int(y))')
points_2, = plt.plot(x, y, 'ko', markersize=8) # original as black dots
points_3, = plt.plot(x[0], y[0], 'go', markersize=10) # starting point as green dot
points_4, = plt.plot(x[-1], y[-1], 'ro', markersize=10) # end point as red dot
# Setup legends for plots:
# legend_1 = plt.legend(handles=[line1], loc=1)\
legends = plt.legend(bbox_to_anchor=(0.5, 1), loc=2, borderaxespad=0.)
plt.show()
def plot_dubins_path(qs, q0, q1, show=True):
"""
Plots the dubins path between a starting and ending point.
Inputs:
qs - dubins path data [[x,y,angle], ..]
q0 - initial position [x,y,angle]
q1 - target position [x,y,angle]
Returns: None
"""
print("QS Array (plot_dubins_path): {}".format(qs))
xs = qs[:,0]
ys = qs[:,1]
us = xs + np.cos(qs[:, 2])
vs = ys + np.sin(qs[:, 2])
# plt.plot(q0[0], q0[1], 'gx', markeredgewidth=4, markersize=10) # actual start point
# plt.plot(q1[0], q1[1], 'rx', markeredgewidth=4, markersize=10) # actual end point
plt.plot(xs, ys, 'b-')
plt.plot(xs, ys, 'r.')
plt.plot(qs[0][0], qs[0][1], 'go', markersize=5) # dubins start point
plt.plot(qs[-1][0], qs[-1][1], 'ro', markersize=5) # dubins end point
# plt.plot(sample_points[:,0], sample_points[:,1], 'k-') # plot sample points path
for i in xrange(qs.shape[0]):
plt.plot([xs[i], us[i]], [ys[i], vs[i]],'r-')
# Adding x/y range for plots:
# plt.xlim(min(qs[:,0]) - 1, max(qs[:,0]) + 1)
# plt.ylim(min(qs[:,1]) - 1, max(qs[:,1]) + 1)
if show:
plt.show()
def plot_full_dubins_path(qs_array, x_path, y_path):
"""
Like plot_dubins_path() function, but plots a full set of points
instead a single A -> B two point dataset.
"""
# Initial setup: No directional plotting, just dots and path at the moment..
# print("QS Array: {}".format(qs_array))
for qs in qs_array:
# xs = qs[:,0]
# ys = qs[:,1]
# plt.plot(xs, ys, 'b-')
# plt.plot(xs, ys, 'r.')
# plot_dubins_path(qs_array[i], ab_array[i][0], ab_array[i][1], show=False)
plot_dubins_path(qs['qs'], qs['q0'], qs['q1'], show=False)
plt.plot(x_path, y_path, 'bo') # overlay path points onto plot
plt.show() # display plot
def build_dubins_points(points):
"""
Takes sample points, which are a list of lists, and
converts them to a tuple with an additional element for
vehicle orientation.
"""
dubins_path = []
for xypair in points:
dubin_pt = (xypair[0], xypair[1], 0.0) # todo: not just default 0 for angle
dubins_path.append(dubin_pt) # add dubin point tuple to list
return dubins_path
def dubins_example_1(initial_pos, final_pos, x_path=None, y_path=None):
"""
A simple example of the dubins model
"""
qs_array = [] # an array of qs of type np.array
ab_array = [] # A-->B position array (e.g., [[(Ax,Ay,Atheta), (Bx,By,Btheta)],..])
dubins_data = {}
# turning_radius = 2.5 # min turning radius? (.pyx file just says 'turning radius')
# step_size = 0.5 # sampling interval
turning_radius = 1.0
step_size = 0.5
# Initializing dubins model:
q0 = initial_pos
q1 = (x_path[0], y_path[0], math.pi)
qs,_ = dubins.path_sample(q0, q1, turning_radius, step_size)
qs = np.array(qs)
dubins_data = {
'q0': q0,
'q1': q1,
'qs': qs
}
qs_array.append(dubins_data)
# Execute dubins model across sample path:
for i in range(1, len(x_path)):
q0 = q1
q1 = (x_path[i], y_path[i], math.pi)
qs,_ = dubins.path_sample(q0, q1, turning_radius, step_size)
qs = np.array(qs)
dubins_data = {
'q0': q0,
'q1': q1,
'qs': qs
}
qs_array.append(dubins_data)
plot_full_dubins_path(qs_array, x_path, y_path) # Plot model path
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def combined_savitzky_dubins_example():
"""
Testing a simple configuration of using the Dubins
model to follow smoothed points created by the Savitzky-Golay
filter for a simple GPS path.
"""
gps_path = simple_line
x, y = simple_line.T
i = np.arange(len(simple_line))
rover_initial = (0.1, 0.5, 0.0) # x,y,angle
rover_final = (5.5, 5.5, math.pi/2.0)
interp_i = np.linspace(0, i.max(), 2 * i.max())
xi = interp1d(i, x, kind='cubic')(interp_i)
yi = interp1d(i, y, kind='cubic')(interp_i)
# yhat_interp = savitzky_golay.savitzky_golay(yi, 7, 5)
yhat = savitzky_golay.savitzky_golay(yi, 7, 5) # SG filter w/out interpolation..
modeled_path = []
for i in range(0, len(xi) - 1):
_angle = np.arctan((yhat[i + 1] - yhat[i]) / (xi[i + 1] - xi[i])) # angle of rover for dubin's position tuples
# Plotting settings:
plt.plot(x, y, 'k-')
plt.plot(x, y, 'ko', markersize=10)
plt.plot(xi, yhat, 'bo')
plt.plot(rover_initial[0], rover_initial[1], 'gx', markersize=10, markeredgewidth=4)
plt.plot(rover_final[0], rover_final[1], 'rx', markersize=10, markeredgewidth=4)
# Adding x/y range for plots:
plt.xlim(min(simple_line[:,0]) - 1, max(simple_line[:,0]) + 1)
plt.ylim(min(simple_line[:,1]) - 1, max(simple_line[:,1]) + 1)
plt.show()
if __name__ == '__main__':
model = sys.argv[1] # get model name from command line
print("Running {} model..".format(model))
if model == 'interp1d':
interp1d_example_1() # run interp1d example 1
elif model == 'dubins':
dubins_example_1() # run dubins example 1
elif model == 'combined':
combined_savitzky_dubins_example() # run SG + Dubins example
print("Finished running {} model..".format(model))