-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_1_dip.py
434 lines (361 loc) · 18.8 KB
/
main_1_dip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from __future__ import print_function
import warnings
warnings.filterwarnings("ignore")
import os
import numpy as np
import torch
import h5py
import matplotlib.image as mpimg
from tqdm import trange
from argparse import ArgumentParser
from time import time
from termcolor import colored
from glob import glob
import architectures as a
import utils as u
def _set_seed(seed=0):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
class Training:
def __init__(self, args, dtype, outpath, img_shape=(512, 512, 3)):
self.args = args
self.dtype = dtype
self.outpath = outpath
self.img_shape = img_shape
self.out_list = []
# losses
self.l2dist = torch.nn.MSELoss().type(self.dtype)
self.ssim = a.SSIMLoss().type(self.dtype)
# training parameters
self.history = {'loss': [], 'psnr': [], 'ssim': [], 'ncc': [], 'lr': [], 'gamma': []}
self.iiter = 0
# data
self.imgpath = None
self.image_name = None
self.img = None
self.img_tensor = None
self.prnu_injection = None
self.prnu_injection_tensor = None
self.prnu_4ncc = None
self.prnu_4ncc_tensor = None
# build input tensors
self.input_tensor = None
self.additional_noise_tensor = None
self._build_input()
# build network
self.net = None
self.parameters = None
self.scheduler = None
self.optimizer = None
@property
def dev(self):
return self.input_tensor.device
def _build_input(self):
self.input_tensor = a.get_noise(self.args.input_depth,
'noise',
self.img_shape[:2],
noise_type=self.args.noise_dist,
var=self.args.noise_std).type(a.dtype)
self.additional_noise_tensor = self.input_tensor.detach().clone()
def build_model(self):
self.net = a.MultiResInjection(a.MulResUnet(num_input_channels=self.args.input_depth,
num_output_channels=self.img_shape[-1],
num_channels_down=self.args.filters,
num_channels_up=self.args.filters,
num_channels_skip=self.args.skip,
upsample_mode=self.args.upsample, # default is bilinear
need_sigmoid=self.args.need_sigmoid,
need_bias=True,
pad=self.args.pad,
# default is reflection, but Fantong uses zero
act_fun=self.args.activation
# default is LeakyReLU).type(self.dtype)
).type(self.dtype),
self.prnu_injection_tensor,
gamma_init=0.)
self.parameters = a.get_params('net', self.net, self.input_tensor)
def load_image(self, image_path):
self.imgpath = image_path
self.image_name = self.imgpath.split('.')[-2].split('/')[-1]
_ext = os.path.splitext(self.imgpath)[-1].lower()
if _ext == '.npy':
self.img = u.normalize(np.load(self.imgpath), zero_mean=False)[0]
elif _ext == '.png': # imread normalizes to 0, 1
self.img = mpimg.imread(self.imgpath)
elif _ext in ['.jpeg', '.jpg']:
self.img = u.normalize(mpimg.imread(self.imgpath), in_min=0, in_max=255, zero_mean=False)[0]
else:
raise ValueError('Invalid image file extension: it has to be npy, png or jpg')
self.img = u.crop_center(self.img, self.img_shape[0], self.img_shape[1])
if self.img.shape != self.img_shape:
raise ValueError('The loaded image shape has to be', self.img_shape)
self.img_tensor = u.numpy2torch(np.swapaxes(self.img, 2, 0)[np.newaxis]).to(self.dev)
def load_prnu(self, device_path):
# fingerprint to be added to the output
if self.args.prnu == 'aware':
self.prnu_injection = np.load(os.path.join(device_path, 'prnu.npy'))
elif self.args.prnu == 'blind':
assert self.img is not None, 'No image has been loaded'
if 'float' in device_path:
self.prnu_injection = u.prnu.extract_single(self.img, sigma=3 / 255)
else:
self.prnu_injection = u.prnu.extract_single(u.float2png(self.img), sigma=3)
else:
raise ValueError('PRNU policy has to be either aware or blind')
if self.prnu_injection.shape != self.img_shape[:2]:
raise ValueError('The loaded PRNU shape has to be', self.img_shape[:2])
self.prnu_injection_tensor = u.numpy2torch(self.prnu_injection[np.newaxis, np.newaxis]).to(self.dev)
# Reference PRNU for computing the NCC
self.prnu_4ncc = np.load(os.path.join(device_path, 'prnu.npy'))
self.prnu_4ncc_tensor = u.numpy2torch(self.prnu_4ncc[np.newaxis, np.newaxis]).to(self.dev)
def _optimization_loop(self):
# add noise to net parameters for regularizing the inversion
if self.args.param_noise:
for n in [x for x in self.net.parameters() if len(x.size()) == 4]:
_n = n.detach().clone().normal_(std=float(n.std()) / 50)
n = n + _n
# add noise to input tensor for regularizing the inversion
input_tensor = self.input_tensor
if self.args.reg_noise_std > 0:
input_tensor = input_tensor + (self.additional_noise_tensor.normal_() * self.args.reg_noise_std)
# compute output
output_tensor = self.net(input_tensor)
# compute loss
mse = self.l2dist(output_tensor, self.img_tensor)
mse.backward()
# Save and display loss terms
self.history['loss'].append(mse.item())
msg = "\tPicture %s, Iter %s, Loss=%.2e" \
% (self.imgpath.split('/')[-1],
str(self.iiter + 1).zfill(u.ten_digit(self.args.epochs)),
self.history['loss'][-1])
# Save and display evaluation metrics
self.history['psnr'].append(u.psnr(u.float2png(output_tensor),
u.float2png(self.img_tensor), 1).item())
msg += ', PSNR = %2.2f dB' % self.history['psnr'][-1]
self.history['ssim'].append(u.ssim(self.img_tensor, output_tensor).item())
msg += ', SSIM = %.4f' % self.history['ssim'][-1]
self.history['lr'].append(self.optimizer.param_groups[0]['lr'])
# Save gamma and output image
self.history['gamma'].append(float(self.net.prnu_injection.weight.detach().cpu().numpy().squeeze()))
if 'float' in self.imgpath:
out_img = np.swapaxes(u.torch2numpy(output_tensor).squeeze(), 0, -1)
else:
out_img = u.float2png(np.swapaxes(u.torch2numpy(output_tensor).squeeze(), 0, -1))
self.out_list.append(out_img)
# compute NCC if requested
if self.args.ncc == 'runtime':
self.history['ncc'].append(u.ncc(self.prnu_4ncc * u.float2png(u.rgb2gray(out_img)),
u.prnu.extract_single(out_img, sigma=3)))
msg += ', NCC = %+.6f' % self.history['ncc'][-1]
print(colored(msg, 'yellow'), '\r', end='')
# model checkpoint
exit_flag = False
if self.args.psnr_max is not None:
if self.history['psnr'][-1] > self.args.psnr_max: # stop the optimization if the PSNR is above a threshold
exit_flag = True
self.iiter += 1
return mse, exit_flag
def _build_scheduler(self, optimizer):
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',
factor=self.args.lr_factor,
threshold=self.args.lr_thresh,
patience=self.args.lr_patience)
def optimize(self):
start = time()
# optimize(self.parameters, self._optimization_loop, self.args)
if self.args.optimizer.lower() == 'lbfgs':
# Do several steps with adam first
optimizer = torch.optim.Adam(self.parameters, lr=0.001, amsgrad=True)
for j in range(100):
optimizer.zero_grad()
self._optimization_loop()
optimizer.step()
def closure2():
optimizer.zero_grad()
return self._optimization_loop()
self.optimizer = torch.optim.LBFGS(self.parameters, max_iter=self.args.epochs, lr=self.args.lr,
tolerance_grad=-1, tolerance_change=-1)
self.optimizer.step(closure2)
elif self.args.optimizer.lower() == 'adam':
self.optimizer = torch.optim.Adam(self.parameters, lr=self.args.lr, amsgrad=True)
if self.args.use_scheduler:
self._build_scheduler(self.optimizer)
for j in range(self.args.epochs):
self.optimizer.zero_grad()
loss, exit_flag = self._optimization_loop()
if exit_flag:
break
self.optimizer.step()
if self.scheduler:
self.scheduler.step(loss)
# force gamma to be positive
with torch.set_grad_enabled(False):
self.net.prnu_injection.weight.clamp_(0)
elif self.args.optimizer.lower() == 'sgd':
self.optimizer = torch.optim.SGD(self.parameters, lr=self.args.lr,
momentum=0, dampening=0, weight_decay=0, nesterov=False)
if self.args.use_scheduler:
self._build_scheduler(self.optimizer)
for j in range(self.args.epochs):
self.optimizer.zero_grad()
loss = self._optimization_loop()
self.optimizer.step()
if self.scheduler:
self.scheduler.step(loss)
else:
assert False
self.elapsed = time() - start
def save_result(self):
mydict = {
'device': u.get_gpu_name(int(os.environ["CUDA_VISIBLE_DEVICES"])),
'elapsed time': u.sec2time(self.elapsed),
'history': self.history,
'args': self.args,
'prnu': self.prnu_injection,
'prnu4ncc': self.prnu_4ncc,
'image': self.img,
}
outname = self.image_name.split('/')[-1]
np.save(os.path.join(self.outpath, outname + '.npy'), mydict)
# save output images
with h5py.File(os.path.join(self.outpath, outname + '.hdf5'), 'w') as f:
dset = f.create_dataset("all_outputs", data=np.asarray(self.out_list))
def _save_model(self, loss):
outname = self.image_name.split('/')[-1] + '.pth'
self.checkpoint_file = os.path.join(self.outpath, outname)
state = dict(net=self.net.state_dict(),
opt=self.optimizer.state_dict(),
sched=self.scheduler.state_dict() if self.scheduler else None,
loss=loss,
epoch=self.iiter)
torch.save(state, self.checkpoint_file)
def compute_ncc(self):
assert len(self.out_list) > 0, "Out list is empty"
self.history['ncc'] = []
print('\n')
for o in trange(len(self.out_list), ncols=90, unit='epoch', desc='\tComputing NCC'):
self.history['ncc'].append(u.ncc(self.prnu_4ncc * u.float2png(u.prnu.rgb2gray(self.out_list[o])),
u.prnu.extract_single(u.float2png(self.out_list[o]), sigma=3)))
def reset(self):
self.iiter = 0
print('')
torch.cuda.empty_cache()
self._build_input()
self.build_model()
self.history = {'loss': [], 'psnr': [], 'ssim': [], 'ncc': [], 'lr': [], 'gamma': []}
self.out_list = []
self.optimizer = None
self.scheduler = None
def _parse_args():
parser = ArgumentParser()
# dataset parameter
parser.add_argument('--device', nargs='+', type=str, required=False, default='all',
help='Device name')
parser.add_argument('--dataset', type=str, required=False, default='dresden_sample',
help='Dataset to be used')
parser.add_argument('--gpu', type=int, required=False, default=-1,
help='GPU to use (lowest memory usage based)')
parser.add_argument('--pics_idx', nargs='+', type=int, required=False,
help='indeces of the first and last pictures to be processed'
'(e.g. 10, 15 to process images from the 10th to the 15th)')
parser.add_argument('--outpath', type=str, required=False, default='debug',
help='Run name in ./results/')
parser.add_argument('--ncc', type=str, required=False, default='skip',
choices=['skip', 'end', 'runtime'],
help='When to compute NCC (being based on Wiener filtering, it is done on CPU)')
# network design
parser.add_argument('--network', type=str, required=False, default='multires', choices=['unet', 'skip', 'multires'],
help='Name of the network to be used')
parser.add_argument('--activation', type=str, default='LeakyReLU', required=False,
help='Activation function to be used in the convolution block [ReLU, Tanh, LeakyReLU]')
parser.add_argument('--need_sigmoid', type=bool, required=False, default=True,
help='Apply a sigmoid activation to the network output')
parser.add_argument('--filters', nargs='+', type=int, required=False, default=[16, 32, 64, 128, 256],
help='Numbers of channels')
parser.add_argument('--skip', nargs='+', type=int, required=False, default=[16, 32, 64, 128],
help='Number of channels for skip')
parser.add_argument('--input_depth', type=int, required=False, default=512,
help='Depth of the input noise tensor')
parser.add_argument('--pad', type=str, required=False, default='zero', choices=['zero', 'reflection'],
help='Padding strategy for the network')
parser.add_argument('--upsample', type=str, required=False, default='nearest',
choices=['nearest', 'bilinear', 'deconv'],
help='Upgoing deconvolution strategy for the network')
# optimizer
parser.add_argument('--epochs', '-e', type=int, required=False, default=10001,
help='Number of training epochs')
parser.add_argument('--optimizer', type=str, required=False, default='adam', choices=['adam', 'lbfgs', 'sgd'],
help='Optimizer to be used')
parser.add_argument('--use_scheduler', action='store_true', default=False,
help='Use ReduceLROnPlateau scheduler')
parser.add_argument('--lr', type=float, default=1e-3, required=False,
help='Learning Rate for Adam optimizer')
parser.add_argument('--lr_factor', type=float, default=.9, required=False,
help='LR reduction for Plateau scheduler')
parser.add_argument('--lr_thresh', type=float, default=1e-4, required=False,
help='LR threshold for Plateau scheduler')
parser.add_argument('--lr_patience', type=int, default=10, required=False,
help='LR patience for Plateau scheduler')
# deep prior strategies
parser.add_argument('--param_noise', action='store_true', default=False,
help='Add normal noise to the parameters every epoch')
parser.add_argument('--reg_noise_std', type=float, required=False, default=0.1,
help='Standard deviation of the normal noise to be added to the input every epoch')
parser.add_argument('--noise_dist', type=str, default='normal', required=False, choices=['normal', 'uniform'],
help='Type of noise for the input tensor')
parser.add_argument('--noise_std', type=float, default=.1, required=False,
help='Standard deviation of the noise for the input tensor')
parser.add_argument('--psnr_max', type=float, required=False, default=39.,
help='Maximum PSNR for stopping the optimization')
parser.add_argument('--prnu', type=str, default='aware', required=False,
choices=['aware', 'blind'],
help='PRNU injection strategy')
args = parser.parse_args()
if args.ncc == 'skip':
args.save_outputs = True
return args
def main():
args = _parse_args()
# set the engine to be used
u.set_gpu(args.gpu)
_set_seed(0)
# create output folder
outpath = os.path.join('./results/', args.outpath)
os.makedirs(outpath, exist_ok=True)
u.write_args(os.path.join(outpath, 'args.txt'), args)
# instantiate run object
T = Training(args, a.dtype, outpath)
# create list of pictures to be processed
if args.device == 'all':
device_list = glob(os.path.join(args.dataset, '*'))
elif isinstance(args.device, list):
device_list = [os.path.join(args.dataset, d) for d in args.device]
elif isinstance(args.device, str):
device_list = [os.path.join(args.dataset, args.device)]
device_list = sorted(device_list)
pics_idx = args.pics_idx if args.pics_idx is not None else [0, None] # all the pictures
for device in device_list: # ./dataset/device
print(colored('Device %s' % device.split('/')[-1], 'yellow'))
# load fingerprint if not extracted from the image itself
if args.prnu != 'blind':
T.load_prnu(device)
pic_list = sorted(glob(os.path.join(device, '*')))
pic_list = pic_list[pics_idx[0]:pics_idx[-1]]
# now we have a list of pictures to be processed, let's go!
for picpath in pic_list:
if os.path.splitext(picpath)[1].lower() not in ['.jpg', '.jpeg', '.png']:
break
T.load_image(picpath)
if args.prnu == 'blind':
T.load_prnu(device)
T.build_model()
T.optimize()
if args.ncc == 'end': # compute NCC on CPU at the end of the optimization
T.compute_ncc()
T.save_result()
T.reset()
print(colored('Anonymization done! Saved to %s' % outpath, 'yellow'))
if __name__ == '__main__':
main()