From 1b59f3475a82e45590d2c3d291d52e1426a123ed Mon Sep 17 00:00:00 2001 From: romainsacchi Date: Sat, 3 Aug 2024 12:49:13 +0200 Subject: [PATCH] Updates docs --- docs/extract.rst | 316 +----------------- docs/transform.rst | 89 +++-- .../lci-PV-perovskite.xlsx | Bin 48285 -> 48283 bytes 3 files changed, 68 insertions(+), 337 deletions(-) diff --git a/docs/extract.rst b/docs/extract.rst index 65b18ecb..fc37a16e 100644 --- a/docs/extract.rst +++ b/docs/extract.rst @@ -934,7 +934,7 @@ They introduce the following datasets: Battery components location source ============================================================= =========== ====================================== battery management system production, for Li-ion battery GLO Schmidt et al. 2019 - bmarket for battery, Li-ion, NMC111, rechargeable, prismatic GLO Dai et al. 2019, Crenna et al. 2021 + market for battery, Li-ion, NMC111, rechargeable, prismatic GLO Dai et al. 2019, Crenna et al. 2021 market for battery, Li-ion, NMC622, rechargeable, prismatic GLO Dai et al. 2019, Crenna et al. 2021 market for battery, Li-ion, NMC811, rechargeable, prismatic GLO Dai et al. 2019, Crenna et al. 2021 market for battery, Li-ion, NCA, rechargeable, prismatic GLO Dai et al. 2019, Crenna et al. 2021 @@ -1369,322 +1369,26 @@ all sorts of data from the IAM output file and store it into multi-dimensional arrays. -Production volumes ------------------- - -Production volumes for different commodities are collected, for the -year and scenario specified by the user. Production volumes are used to -build regional markets. For example, for the global market, the volume-based -shares of each region are used to reflect their respective supply importance. -Another example is for building electricity markets: the respective -production volumes of each electricity-producing technology is used to -determine the gross supply mix of the market. - - -The table below shows a non-exhaustive list of correspondences between *premise*, REMIND, IMAGE -and LCI terminology, regarding electricity producing technologies. *premise* -production volumes given for secondary energy carriers for electricity. -The mapping file is available in the library root folder: mappingElec_. - -.. _mappingElec: https://github.com/polca/premise/blob/master/premise/iam_variables_mapping/electricity_variables.yaml - - - ========================== ===================================== ================================================= =================================================================================================== - name in premise name in REMIND name in IMAGE name in LCI database (only first of several shown) - ========================== ===================================== ================================================= =================================================================================================== - Biomass CHP SE|Electricity|Biomass|CHP|w/o CCS Secondary Energy|Electricity|Biomass|w/o CCS|3 heat and power co-generation, wood chips - Biomass CHP CCS Secondary Energy|Electricity|Biomass|w/ CCS|2 electricity production, at co-generation power plant/wood, post, pipeline 200km, storage 1000m - Biomass ST Secondary Energy|Electricity|Biomass|w/o CCS|1 electricity production, at wood burning power plant 20 MW, truck 25km, no CCS - Biomass IGCC CCS SE|Electricity|Biomass|IGCCC|w/ CCS Secondary Energy|Electricity|Biomass|w/ CCS|1 electricity production, from CC plant, 100% SNG, truck 25km, post, pipeline 200km, storage 1000m - Biomass IGCC SE|Electricity|Biomass|IGCC|w/o CCS Secondary Energy|Electricity|Biomass|w/o CCS|2 electricity production, at BIGCC power plant 450MW, no CCS - Coal PC SE|Electricity|Coal|PC|w/o CCS Secondary Energy|Electricity|Coal|w/o CCS|1 electricity production, hard coal - Coal IGCC SE|Electricity|Coal|IGCC|w/o CCS Secondary Energy|Electricity|Coal|w/o CCS|2 electricity production, at power plant/hard coal, IGCC, no CCS - Coal PC CCS SE|Electricity|Coal|PCC|w/ CCS electricity production, at power plant/hard coal, post, pipeline 200km, storage 1000m - Coal IGCC CCS SE|Electricity|Coal|IGCCC|w/ CCS Secondary Energy|Electricity|Coal|w/ CCS|1 electricity production, at power plant/hard coal, pre, pipeline 200km, storage 1000m - Coal CHP SE|Electricity|Coal|CHP|w/o CCS Secondary Energy|Electricity|Coal|w/o CCS|3 heat and power co-generation, hard coal - Coal CHP CCS Secondary Energy|Electricity|Coal|w/ CCS|2 electricity production, at co-generation power plant/hard coal, oxy, pipeline - Gas OC SE|Electricity|Gas|GT Secondary Energy|Electricity|Gas|w/o CCS|1 electricity production, natural gas, conventional power plant - Gas CC SE|Electricity|Gas|CC|w/o CCS Secondary Energy|Electricity|Gas|w/o CCS|2 electricity production, natural gas, combined cycle power plant - Gas CHP SE|Electricity|Gas|CHP|w/o CCS Secondary Energy|Electricity|Gas|w/o CCS|3 heat and power co-generation, natural gas, combined cycle power plant, 400MW electrical - Gas CHP CCS Secondary Energy|Electricity|Gas|w/ CCS|2 electricity production, at co-generation power plant/natural gas, post, pipeline - Gas CC CCS SE|Electricity|Gas|w/ CCS Secondary Energy|Electricity|Gas|w/ CCS|1 electricity production, at power plant/natural gas, pre, pipeline - Geothermal SE|Electricity|Geothermal Secondary Energy|Electricity|Other electricity production, deep geothermal - Hydro SE|Electricity|Hydro Secondary Energy|Electricity|Hydro electricity production, hydro, reservoir - Nuclear SE|Electricity|Nuclear Secondary Energy|Electricity|Nuclear electricity production, nuclear - Oil ST SE|Electricity|Oil|w/o CCS Secondary Energy|Electricity|Oil|w/o CCS|1 electricity production, oil - Oil CC Secondary Energy|Electricity|Oil|w/o CCS|2 electricity production, oil - Oil CC CCS Secondary Energy|Electricity|Oil|w/ CCS|1 electricity production, at co-generation power plant/oil, post, pipeline 200km, storage 1000m - Oil CHP Secondary Energy|Electricity|Oil|w/o CCS|3 heat and power co-generation, oil - Oil CHP CCS Secondary Energy|Electricity|Oil|w/ CCS|2 electricity production, at co-generation power plant/oil, post, pipeline 200km, storage 1000m - Solar CSP SE|Electricity|Solar|CSP Secondary Energy|Electricity|Solar|CSP electricity production, solar thermal parabolic trough, 50 MW - Solar PV Centralized SE|Electricity|Solar|PV Secondary Energy|Electricity|Solar|PV|1 electricity production, photovoltaic, commercial - Solar PV Residential Secondary Energy|Electricity|Solar|PV|2 electricity production, photovoltaic, residential - Wind Onshore SE|Electricity|Wind|Onshore Secondary Energy|Electricity|Wind|1 electricity production, wind, <1MW turbine, onshore - Wind Offshore SE|Electricity|Wind|Offshore Secondary Energy|Electricity|Wind|2 electricity production, wind, 1-3MW turbine, offshore - ========================== ===================================== ================================================= =================================================================================================== +Production volumes and efficiencies +----------------------------------- -.. note:: - - IAMs do not necessarily display the same variety of technologies. - For example, REMIND does not provide a variable for residential PV production while - IMAGE does. - - -.. note:: - - Because of a lack of more diverse inventories, wind power is only represented - with relatively small installations (< 1MW, 1-3 MW and >3 MW), in respect to today's - standard. This can lead to overestimate the associated environmental burden. - - -The table below shows the correspondence between *premise*, REMIND, IMAGE -and LCI terminology, regarding steel and cement producing technologies. The mapping files are -available in the library root folder: mappingCement_ and mappingSteel_. - - - ==================== ====================================== ============================= ============================== - name in premise name in REMIND name in IMAGE name in LCI database - ==================== ====================================== ============================= ============================== - cement Production|Industry|Cement Production|Cement cement production, Portland - steel - primary Production|Industry|Steel|Primary Production|Steel|Primary steel production, converter - steel - secondary Production|Industry|Steel|Secondary Production|Steel|Secondary steel production, electric - ==================== ====================================== ============================= ============================== - -The table below shows the correspondence between *premise*, REMIND, IMAGE -and LCI terminology, regarding fuel producing technologies. The mapping file is -available in the library root folder: mappingFuels_. - - - ==================================== =============================================== ========================================================================= ================================================================================================================================================ - name in premise name in REMIND name in IMAGE name in LCI database (only first of several shown) - ==================================== =============================================== ========================================================================= ================================================================================================================================================ - natural gas SE|Gases|Non-Biomass natural gas, high pressure - biomethane SE|Gases|Biomass biomethane, gaseous - diesel SE|Liquids|Oil Secondary Energy|Consumption|Liquids|Fossil diesel production, low-sulfur - gasoline SE|Liquids|Oil Secondary Energy|Consumption|Liquids|Fossil petrol production, low-sulfur - petrol, synthetic, hydrogen SE|Liquids|Hydrogen gasoline production, synthetic, from methanol, hydrogen from electrolysis, CO2 from DAC, energy allocation, at fuelling station - petrol, synthetic, coal SE|Liquids|Coal|w/o CCS gasoline production, synthetic, from methanol, hydrogen from coal gasification, CO2 from DAC, energy allocation, at fuelling station - diesel, synthetic, hydrogen SE|Liquids|Hydrogen diesel production, synthetic, from Fischer Tropsch process, hydrogen from electrolysis, energy allocation, at fuelling station - diesel, synthetic, coal SE|Liquids|Coal|w/o CCS diesel production, synthetic, from Fischer Tropsch process, hydrogen from coal gasification, energy allocation, at fuelling station - diesel, synthetic, wood SE|Liquids|Biomass|Biofuel|BioFTR|w/o CCS Secondary Energy|Consumption|Liquids|Biomass|FT Diesel|Woody|w/oCCS diesel production, synthetic, from Fischer Tropsch process, hydrogen from wood gasification, energy allocation, at fuelling station - diesel, synthetic, wood, with CCS SE|Liquids|Biomass|Biofuel|BioFTRC|w/ CCS Secondary Energy|Consumption|Liquids|Biomass|FT Diesel|Woody|w/CCS diesel production, synthetic, from Fischer Tropsch process, hydrogen from wood gasification, with CCS, energy allocation, at fuelling station - diesel, synthetic, grass Secondary Energy|Consumption|Liquids|Biomass|FT Diesel|Grassy|w/oCCS diesel production, synthetic, from Fischer Tropsch process, hydrogen from wood gasification, energy allocation, at fuelling station - diesel, synthetic, grass, with CCS Secondary Energy|Consumption|Liquids|Biomass|FT Diesel|Grassy|w/CCS diesel production, synthetic, from Fischer Tropsch process, hydrogen from wood gasification, with CCS, energy allocation, at fuelling station - hydrogen, electrolysis SE|Hydrogen|Electricity hydrogen supply, from electrolysis - hydrogen, biomass SE|Hydrogen|Biomass|w/o CCS hydrogen supply, from gasification of biomass, by - hydrogen, biomass, with CCS SE|Hydrogen|Biomass|w/ CCS hydrogen supply, from gasification of biomass by heatpipe reformer, with CCS - hydrogen, coal SE|Hydrogen|Coal|w/o CCS hydrogen supply, from coal gasification, by truck, as gaseous, over 500 km - hydrogen, from natural gas SE|Hydrogen|Gas|w/o CCS hydrogen supply, from SMR of from natural gas, by truck, as gaseous, over 500 km - hydrogen, from natural gas, with CCS SE|Hydrogen|Gas|w/ CCS hydrogen supply, from SMR of from natural gas, with CCS, by truck, as gaseous, over 500 km - biodiesel, oil SE|Liquids|Biomass|Biofuel|Biodiesel|w/o CCS Secondary Energy|Consumption|Liquids|Biomass|Biodiesel|Oilcrops|w/oCCS biodiesel production, via transesterification - biodiesel, oil, with CCS Secondary Energy|Consumption|Liquids|Biomass|Biodiesel|Oilcrops|w/CCS biodiesel production, via transesterification - bioethanol, wood SE|Liquids|Biomass|Cellulosic|w/o CCS Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Woody|w/oCCS ethanol production, via fermentation, from forest - bioethanol, wood, with CCS SE|Liquids|Biomass|Cellulosic|w/ CCS Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Woody|w/CCS ethanol production, via fermentation, from forest, with carbon capture and storage - bioethanol, grass SE|Liquids|Biomass|Non-Cellulosic Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Grassy|w/oCCS ethanol production, via fermentation, from switchgrass - bioethanol, grass, with CCS Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Grassy|w/CCS ethanol production, via fermentation, from switchgrass, with carbon capture and storage - bioethanol, grain SE|Liquids|Biomass|Conventional Ethanol Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Maize|w/oCCS ethanol production, via fermentation, from wheat grains - bioethanol, grain, with CCS Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Maize|w/CCS ethanol production, via fermentation, from corn, with carbon capture and storage - bioethanol, sugar SE|Liquids|Biomass|Conventional Ethanol Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Sugar|w/oCCS ethanol production, via fermentation, from sugarbeet - bioethanol, sugar, with CCS Secondary Energy|Consumption|Liquids|Biomass|Ethanol|Sugar|w/CCS ethanol production, via fermentation, from sugarbeet, with carbon capture and storage - methanol, wood Secondary Energy|Consumption|Liquids|Biomass|Methanol|Woody|w/oCCS market for methanol, from biomass - methanol, grass Secondary Energy|Consumption|Liquids|Biomass|Methanol|Grassy|w/oCCS market for methanol, from biomass - methanol, wood, with CCS Secondary Energy|Consumption|Liquids|Biomass|Methanol|Woody|w/CCS market for methanol, from biomass - methanol, grass, with CCS Secondary Energy|Consumption|Liquids|Biomass|Methanol|Grassy|w/CCS market for methanol, from biomass - ==================================== =============================================== ========================================================================= ================================================================================================================================================ - -.. warning:: - - Some fuel types are not properly represented in the LCI database. - Available inventories for biomass-based methanol production do not differentiate - between wood and grass as the feedstock. - -.. note:: - - **Modelling choice**: *premise* builds several potential supply chains for hydrogen. - Because the logistics to supply hydrogen in the future is not known or indicated by the IAM, - the choice is made to supply it by truck over 500 km, in a gaseous state. - - -The production volumes considered for a given scenario can be consulted, like so: - -.. code-block:: python - - ndb.scenarios[0]["iam data"].production_volumes - -To have an updated overview of the mapping concenring all sectors, -refer to this file: mapping_. +The mapping between IAM variables and *premise* variables regarding production +volumes and efficiencies can be found in the mapping_ file. .. _mapping: https://github.com/polca/premise/blob/master/premise/iam_variables_mapping/mapping_overview.xlsx -Efficiencies ------------- - -The efficiency of the different technologies producing -commodities (e.g., electricity, steel, cement, fuel) is modelled to change over time -by the IAM. *premise* stores the relative change in efficiency of such technologies. - -The table below shows the correspondence between *premise*, REMIND, IMAGE, -regarding efficiency variables for electricity producing technologies. The mapping file is -available in the library root folder: mappingElec_. - -.. _mappingElec: https://github.com/polca/premise/blob/master/premise/data/electricity/electricity_tech_vars.yml - - ================== ================================================== =========================================== - name in premise name in REMIND name in IMAGE - ================== ================================================== =========================================== - Biomass CHP Tech|Electricity|Biomass|CHP|w/o CCS|Efficiency Efficiency|Electricity|Biomass|w/o CCS|3 - Biomass CHP CCS Efficiency|Electricity|Biomass|w/ CCS|2 - Biomass ST Efficiency|Electricity|Biomass|w/o CCS|1 - Biomass IGCC CCS Tech|Electricity|Biomass|IGCCC|w/ CCS|Efficiency Efficiency|Electricity|Biomass|w/ CCS|1 - Biomass IGCC Tech|Electricity|Biomass|IGCC|w/o CCS|Efficiency Efficiency|Electricity|Biomass|w/o CCS|2 - Coal PC Tech|Electricity|Coal|PC|w/o CCS|Efficiency Efficiency|Electricity|Coal|w/o CCS|1 - Coal IGCC Tech|Electricity|Coal|IGCC|w/o CCS|Efficiency Efficiency|Electricity|Coal|w/o CCS|2 - Coal PC CCS Tech|Electricity|Coal|PCC|w/ CCS|Efficiency - Coal IGCC CCS Tech|Electricity|Coal|IGCCC|w/ CCS|Efficiency Efficiency|Electricity|Coal|w/ CCS|1 - Coal CHP Tech|Electricity|Coal|CHP|w/o CCS|Efficiency Efficiency|Electricity|Coal|w/o CCS|3 - Coal CHP CCS Efficiency|Electricity|Coal|w/ CCS|2 - Gas OC Tech|Electricity|Gas|GT|Efficiency Efficiency|Electricity|Gas|w/o CCS|1 - Gas CC Tech|Electricity|Gas|CC|w/o CCS|Efficiency Efficiency|Electricity|Gas|w/o CCS|2 - Gas CHP Tech|Electricity|Gas|CHP|w/o CCS|Efficiency Efficiency|Electricity|Gas|w/o CCS|3 - Gas CHP CCS Efficiency|Electricity|Gas|w/ CCS|2 - Gas CC CCS Tech|Electricity|Gas|CCC|w/ CCS|Efficiency Efficiency|Electricity|Gas|w/ CCS|1 - Nuclear Efficiency|Electricity|Nuclear - Oil ST Tech|Electricity|Oil|DOT|Efficiency Efficiency|Electricity|Oil|w/o CCS|1 - Oil CC Efficiency|Electricity|Oil|w/o CCS|2 - Oil CC CCS Efficiency|Electricity|Oil|w/ CCS|1 - Oil CHP Efficiency|Electricity|Oil|w/o CCS|3 - Oil CHP CCS Efficiency|Electricity|Oil|w/ CCS|2 - ================== ================================================== =========================================== - -The table below shows the correspondence between *premise*, REMIND, IMAGE, -regarding efficiency variables for cement and steel -producing technologies. For cement and steel, it is different, as *premise* -derives efficiencies by dividing the the final energy demand by the production volume -(to obtain GJ/t steel or cement). This is because efficiency variables for cement -and steel is not always given as such. The mapping files are -available in the library root folder: mappingCement_ and mappingSteel_. - -.. _mappingCement: https://github.com/polca/premise/blob/master/premise/iam_variables_mapping/cement_variables.yaml -.. _mappingSteel: https://github.com/polca/premise/blob/master/premise/iam_variables_mapping/steel_variables.yaml - - ==================== ========================================== ============================== - name in premise name in REMIND name in IMAGE - ==================== ========================================== ============================== - cement Final Energy|Industry|Cement FE|Industry|Cement - steel - primary Final Energy|Industry|Steel FE|Industry|Steel|Primary - steel - secondary Final Energy|Industry|Steel|Electricity FE|Industry|Steel|Secondary - ==================== ========================================== ============================== - -The table below shows the correspondence between *premise*, REMIND, IMAGE, -regarding efficiency variables for fuels producing technologies. The mapping file is -available in the library root folder: mappingFuels_. - -.. _mappingFuels: https://github.com/polca/premise/blob/master/premise/iam_variables_mapping/fuel_variables.yaml - - ==================================== ======================================================================= ======================================================== - name in premise name in REMIND name in IMAGE - ==================================== ======================================================================= ======================================================== - biomethane Tech|Gases|Biomass|w/o CCS|Efficiency - diesel Tech|Liquids|Oil|Efficiency - gasoline Tech|Liquids|Oil|Efficiency - diesel, synthetic, wood Efficiency|Liquids|Biomass|FT Diesel|Woody|w/o CCS - diesel, synthetic, wood, with CCS Efficiency|Liquids|Biomass|FT Diesel|Woody|w/ CCS - diesel, synthetic, grass Efficiency|Liquids|Biomass|FT Diesel|Woody|w/o CCS - diesel, synthetic, grass, with CCS Efficiency|Liquids|Biomass|FT Diesel|Woody|w/ CCS - biodiesel, oil Tech|Liquids|Biomass|Biofuel|Biodiesel|w/o CCS|Efficiency Efficiency|Liquids|Biomass|Biodiesel|Oilcrops|w/o CCS - biodiesel, oil, with CCS Efficiency|Liquids|Biomass|Biodiesel|Oilcrops|w/ CCS - bioethanol, wood Tech|Liquids|Biomass|Biofuel|Ethanol|Cellulosic|w/o CCS|Efficiency Efficiency|Liquids|Biomass|Ethanol|Woody|w/o CCS - bioethanol, wood, with CCS Efficiency|Liquids|Biomass|Ethanol|Woody|w/ CCS - bioethanol, grass Tech|Liquids|Biomass|Biofuel|Ethanol|Cellulosic|w/o CCS|Efficiency Efficiency|Liquids|Biomass|Ethanol|Grassy|w/o CCS - bioethanol, grass, with CCS Efficiency|Liquids|Biomass|Ethanol|Grassy|w/ CCS - bioethanol, grain Tech|Liquids|Biomass|Biofuel|Ethanol|Conventional|w/o CCS|Efficiency Efficiency|Liquids|Biomass|Ethanol|Maize|w/o CCS - bioethanol, grain, with CCS Efficiency|Liquids|Biomass|Ethanol|Maize|w/ CCS - bioethanol, sugar Tech|Liquids|Biomass|Biofuel|Ethanol|Conventional|w/o CCS|Efficiency Efficiency|Liquids|Biomass|Ethanol|Sugar|w/o CCS - bioethanol, sugar, with CCS Efficiency|Liquids|Biomass|Ethanol|Sugar|w/ CCS - methanol, wood Efficiency|Liquids|Biomass|Methanol|Woody|w/o CCS - methanol, grass Efficiency|Liquids|Biomass|Methanol|Grassy|w/o CCS - methanol, wood, with CCS Efficiency|Liquids|Biomass|Methanol|Woody|w/ CCS - methanol, grass, with CCS Efficiency|Liquids|Biomass|Methanol|Grassy|w/ CCS - ==================================== ======================================================================= ======================================================== - - -*premise* stores the change in efficiency (called *scaling factor*) of a given technology -relative to 2020. This is based on the fact that the efficiency of ecoinvent datasets -are believed to reflect current (2020) efficiency. - -.. note:: - - If a technology, in a given region, is given a *scaling factor* of 1.2 in 2030, - this means that the corresponding ecoinvent dataset is adjusted so that its - efficiency is improved by 20% (by multiplying the dataset inputs by 1/1.2). - In other words, *premise* does not use the efficiency given by the IAM, - but rather its change over time relative to 2020. - -The *scaling factors* considered for a given scenario can be consulted, like so: - -.. code-block:: python - - ndb.scenarios[0]["iam data"].efficiency - Land use and land use change ---------------------------- -When building prospective databases using the IAM IMAGE model, the latter provides -additional variables relating to average *land use* and *land use change* emissions, for each type of -crop grown to be used in biofuel production. -Upon the creation of biofuel supply chains in the *Fuels* transformation function, such information -is used to adjust the inventories of crop farming datasets. The table below shows the IMAGE variables -used to that effect. The mapping file is -available in the library root folder: mappingCrops_. - -.. _mappingCrops: https://github.com/polca/premise/blob/master/premise/iam_variables_mapping/crops_variables.yaml - - ========================= ========================== ========================================== ============================================================= - Crop family in premise Crop type in premise Land use variable in IMAGE [Ha/GJ-Prim] Land use change variable in IMAGE [kg CO2/GJ-Prim] - ========================= ========================== ========================================== ============================================================= - sugar sugarbeet, sugarcane Land Use|Average|Biomass|Sugar Emission Factor|CO2|Energy|Supply|Biomass|Average|Sugar - oil rapeseed, palm oil Land Use|Average|Biomass|OilCrop Emission Factor|CO2|Energy|Supply|Biomass|Average|Oilcrops - wood poplar, eucalyptus Land Use|Average|Biomass|Woody Emission Factor|CO2|Energy|Supply|Biomass|Average|Woody - grass switchgrass, miscanthus Land Use|Average|Biomass|Grassy Emission Factor|CO2|Energy|Supply|Biomass|Average|Grassy - grain corn Land Use|Average|Biomass|Maize Emission Factor|CO2|Energy|Supply|Biomass|Average|Maize - ========================= ========================== ========================================== ============================================================= - -The *land use* and *land use change* emissions considered for a given scenario -can be consulted, like so: - -.. code-block:: python +The mapping between IAM variables and *premise* variables regarding land use +and emissions caused by land use change can be found in the mapping_ file. - ndb.scenarios[0]["iam data"].land_use - ndb.scenarios[0]["iam data"].land_use_change Carbon Capture and Storage -------------------------- -Some scenarios involve the capture and storage of CO2 emissions -of certain sectors (e.g., cement and steel). -The capture rate of a given sector is calculated -from the IAM data file, as:: - - rate = amount of CO2 captured / (amount of CO2 captured + amount of CO2 not captured) - -The table below lists the variables needed to calculate those rates. - - ============================== =============================== ============================================ - name in premise name in REMIND name in IMAGE - ============================== =============================== ============================================ - cement - CO2 (not captured) Emi|CO2|FFaI|Industry|Cement Emissions|CO2|Industry|Cement|Gross - cement - CCO2 (captured) Emi|CCO2|FFaI|Industry|Cement Emissions|CO2|Industry|Cement|Sequestered - steel - CO2 (not captured) Emi|CO2|FFaI|Industry|Steel Emissions|CO2|Industry|Steel|Gross - steel - CCO2 (captured) Emi|CCO2|FFaI|Industry|Steel Emissions|CO2|Industry|Steel|Sequestered - ============================== =============================== ============================================ - - -The *carbon capture rates* which are floating values -comprised between 0 and 1, can be consulted like so: - -.. code-block:: python - - ndb.scenarios[0]["iam data"].carbon_capture_rate +The mapping between IAM variables and *premise* variables regarding carbon capture +and storage can be found in the mapping_ file. Data sources external to the IAM @@ -1693,7 +1397,7 @@ Data sources external to the IAM *premise* tries to adhere to the IAM scenario data as much as possible. There are however a number of cases where external data sources are used. This is notably the case for non-CO2 pollutants emissions for different sectors (electricity, steel and cement), -as well as expected efficiency gains for photovoltaic panels. +as well as expected efficiency gains for photovoltaic panels and batteries. Air emissions ************* diff --git a/docs/transform.rst b/docs/transform.rst index 5037cd71..11fdccd2 100644 --- a/docs/transform.rst +++ b/docs/transform.rst @@ -4,11 +4,12 @@ TRANSFORM A series of transformations are applied to the Life Cycle Inventory (LCI) database to align process performance and technology market shares with the outputs from the Integrated Assessment Model (IAM) scenario. -Battery -""""""" +Mobile batteries +"""""""""""""""" -Inventories for several battery technologies are provided in *premise*. -See EXTRACT/Import of additional inventories/Li-ion batteries for additional information. +Inventories for several battery technologies for mobile applications are provided +in *premise*. See EXTRACT/Import of additional inventories/Li-ion batteries for +additional information. *premise* adjusts the mass of battery packs throughout the database to reflect progress in specific energy density (kWh/kg cell). @@ -37,41 +38,41 @@ Run The table below shows the **current** specific energy density of different battery technologies. -====================== ==================================== ==================== ================== ================= =================== -Type Specific energy density (current) BoP mass share [%] Battery energy kg battery/kWh kg CO2-eq./kWh +====================== ==================================== ==================== ================== +Type Specific energy density (current) BoP mass share [%] Battery energy [kWh/kg cell] density [kWh/kg battery] -====================== ==================================== ==================== ================== ================= =================== -Li-ion, NMC111 0.15 73% 0.11 7.0 177 -Li-ion, NMC622 0.20 73% 0.15 6.9 108 -Li-ion, NMC811 0.22 71% 0.16 6.7 108 -Li-ion, NCA 0.23 71% 0.16 6.3 100 -Li-ion, LFP 0.14 73% 0.10 9.8 118 -Li-ion, LiMn2O4 0.13 80% 0.10 9.6 92 -Li-ion, LTO 0.09 64% 0.05 18.4 450 -Li-sulfur, Li-S 0.15 75% 0.11 8.9 352 -Li-oxygen, Li-O2 0.36 55% 0.20 5.1 125 -Sodium-ion, SiB 0.16 75% 0.12 8.5 72 -====================== ==================================== ==================== ================== ================= =================== +====================== ==================================== ==================== ================== +Li-ion, NMC111 0.15 73% 0.11 +Li-ion, NMC622 0.20 73% 0.15 +Li-ion, NMC811 0.22 71% 0.16 +Li-ion, NCA 0.23 71% 0.16 +Li-ion, LFP 0.14 73% 0.10 +Li-ion, LiMn2O4 0.13 80% 0.10 +Li-ion, LTO 0.09 64% 0.05 +Li-sulfur, Li-S 0.15 75% 0.11 +Li-oxygen, Li-O2 0.36 55% 0.20 +Sodium-ion, SiB 0.16 75% 0.12 +====================== ==================================== ==================== ================== And the table below shows the **projected** (2050) specific energy density of different battery technologies. -====================== ==================================== ==================== ================== ================ -Type Specific energy density (2050) BoP mass share [%] Battery energy kg battery/kWh +====================== ==================================== ==================== ================== +Type Specific energy density (2050) BoP mass share [%] Battery energy [kWh/kg cell] density [kWh/kg battery] -====================== ==================================== ==================== ================== ================ -Li-ion, NMC111 0.2 73% 0.15 6.9 -Li-ion, NMC811 0.5 71% 0.36 2.8 -Li-ion, NCA 0.35 71% 0.25 4.0 -Li-ion, LFP 0.25 73% 0.18 5.5 -Li-ion, LiMn2O4 0.2 80% 0.16 6.3 -Li-ion, LTO 0.15 75% 0.11 8.9 -Li-sulfur, Li-S 0.5 75% 0.38 2.7 -Li-oxygen, Li-O2 0.50 64% 0.20 5.1 -Sodium-ion, SiB 0.22 75% 0.17 6.1 -====================== ==================================== ==================== ================== ================ +====================== ==================================== ==================== ================== +Li-ion, NMC111 0.2 73% 0.15 +Li-ion, NMC811 0.5 71% 0.36 +Li-ion, NCA 0.35 71% 0.25 +Li-ion, LFP 0.25 73% 0.18 +Li-ion, LiMn2O4 0.2 80% 0.16 +Li-ion, LTO 0.15 75% 0.11 +Li-sulfur, Li-S 0.5 75% 0.38 +Li-oxygen, Li-O2 0.50 64% 0.20 +Sodium-ion, SiB 0.22 75% 0.17 +====================== ==================================== ==================== ================== For example, in 2050, the mass of NMC811 batteries (cells and Balance of Plant) is expected to @@ -81,6 +82,32 @@ shows the new mass of battery packs for each activity using them. The target values used for scaling can be modified by the user. The YAML file is located under premise/data/battery/energy_density.yaml. +For each battery technology *premise* creates a market dataset that represents the +supply of 1 kWh of electricity stored in a battery of the given technology. + +The table below shows the market for battery capacity datasets created by *premise*. + +=============================================== =========== ============================= =============================== + Name Location Kg per kWh in 2020 (kg/kWh) Kg per kWh in 2050 (kg/KWh) +=============================================== =========== ============================= =============================== +market for battery capacity, Li-ion, LFP GLO 8.6 6.22 +market for battery capacity, Li-ion, LTO GLO 18.4 18.4 +market for battery capacity, Li-ion, Li-O2 GLO 5.05 3.37 +market for battery capacity, Li-ion, LiMn2O4 GLO 8.75 8.75 +market for battery capacity, Li-ion, NCA GLO 5.03 4.14 +market for battery capacity, Li-ion, NMC111 GLO 7.61 6.85 +market for battery capacity, Li-ion, NMC523 GLO 6.85 6.23 +market for battery capacity, Li-ion, NMC622 GLO 5.71 5.27 +market for battery capacity, Li-ion, NMC811 GLO 5.03 4.14 +market for battery capacity, Li-ion, NMC955 GLO 4.14 3.71 +market for battery capacity, Li-sulfur, Li-S GLO 8.89 3.92 +market for battery capacity, Sodium-Nickel-Cl GLO 8.62 8.62 +market for battery capacity, Sodium-ion, SiB GLO 8.33 6.54 +=============================================== =========== ============================= =============================== + +Changing the target values in the YAML file will change the scaling factors +and the mass of battery packs per kWh in the database. + Biomass """"""" diff --git a/premise/data/additional_inventories/lci-PV-perovskite.xlsx b/premise/data/additional_inventories/lci-PV-perovskite.xlsx index f95810c78edacee485017d2e4276d79c1480eaf1..d27a841cfc75c0698cac5573b35f9ee045424698 100644 GIT binary patch delta 2070 zcmV+x2t1{i-`Z=*OAeP3z+1B)un6E!A~5Y%J@ zA#5wPqbSX^yHAk=PO$=*H6}?ln*YAnB;;eVT4g(n5*vSTeD1yHUf+G*=9#vpqGG%l z==j#uHCn_xVa3}(|2m5dSJx^@iiBjmpacD#R{H1RufN=FxL7SXUughPR0BPgvh)zD z;*@{pq`KuLEnsEIMNT9P#T%+hK}k}jl*&9qmT7iTPFSJu5Ik`W245~&OhX>mIW6Q4 zM9_>#pkJk|tXi}@z6LHQVpW$$%<~c;7A#}(y#dv=JoX;m3NFYZ1GBf-(Y6A9UHD@Y z8mm1CmM)IUSuA+Pm+}^%(T?L5=;Jgo_IR|c*KD=A9jK1uotC6z&LUI+UOxH3}$#KFYO$K@ohI~Vh6JV97 z%b;c%tYWi=Z5<5{a-IknK_-+Ku2FIun!5Y5(WLvMOQ% zD<3P_^pF+|Jce!4@0oquFvou#$FSW#$i?nh#>ft>vC|ueroa=g=IG_h zjiWD5v!^TfK8|Pe*XY{K{!cAo^p6hR1zfd_Oi?S7;oq~m3RwaK zPd*+#lNSv#f7iC`)J{UuvbB^J#u)1!UMuoB5w$E&Ql2*U-FK4hBoG*BgQK$~-|zmq zJI!u)swNvSR_bO>S(H!$jnJiRmUH_3+r!nE66<(V@>(}Ar+cvU_U8S&*;bnuy8>_o z35}i8m2>Shj;&aM;x^JPG`Le~qqxJVS;n?Cz{}vIf9g0*k~~&iHnby5%_R(7RZ_sc z7Hb8K>mUYd?ohv7$<_`uB`(1!ZeG^ymC&k1#6s56?E{n&C8kfyMjO7U@!UH$;)3i9 zJ}LgQAxv05i=?D5+Um+hNRB(r=f|JKlbDMG>HPc`Vb~}(u#vuiM^ySYN$mQ-N{_JY zjj;RxfAi@w)3q$;^iR_NuFx_+B*$Uc`%7RE7K&jS1UF#YVC6u)BZniAjG3$0&# zfG0#HsKo}b*TRL98|a`P^8&MEe+7MEg5u(Xf4bB6LFq%d4qpsea0_?3{wYhh!oYa# zN~rj{cE`nWG|ti_V=0R2H^1ubBgo~-p$o2t=9`xLd$0m;18R*@pCF-Y42UC9(%))q zX1)t{+r`U^6ZQhEdypPUiC9~w)u5_pbrd{mprGw38H=)m!vA<;^@Atc-jk)Tk3Z@u zF=z+MB*G+IC?CHJB7B9rB&2!7@==oe{9XvjdkES=L-q;{MemNbcQ3}5YKTKo{{gdh z4@{&5C!o&3VzbAyCINq6Ps1P-#otZ*4utm(ShqPz*Tp|sjB$z48I5lQ?p9)f25@uV zUfRt$qwx{W;djrup_qP{8m++x?d$}z9>oZ(bV}RR1V1fi*%+e`g;k<<7AANL0Z+@* zlR`FJIuG~WHQ=L$fD*|DE}IFiVr)1eK~`Wy=p~0u;?j8|Vmg2N6={Tg6DuHnN=L*% z6iP%vT42^3hXQ&eL4(mm1XNwtR3#Xp0_&l$9>XZ$lc=b=pk=g;Gks>-42O=U3N@87}*j z4Kq5*=y1WtoSpN0@Y>G*@xD#HyD<9{{}TIyjE*y!FBs))!1J>s;uoOoa{v4(;U| zQM*tADW;Q1rYV!myD9A8 zNp7)eup$--FW$Q5*J)(6O`}w_NN6Ss)-~T*X@2hg`pex$$mLv!r2zm%*)>z8Rslj~ zoU(tMmbYTX3RqbPnNtNr`G(4sWHc#L##Ejm8)F~klo#d>A&}Q#h{b}(EEI8-vqJ4a zB+IA*`en*jWrLQ-*TCgeE~}Lli+lwTbDnYaUW1xO9tRI^g^+Zff!SN)8CwZIAN~YG zV>c(k(#26ZkEJNZLfry1+L6AnpI}7DnG1immp-@-$wiW_xsKt1mGnQz%0FQFM=*ka z8jXOoYOMs|ybq#z2X406yIb&#z3ilG(ADY-&2^+Q)5vJ4MhRCe>6$GViVZtXfK{?u z4Jw|&D#0z{ny7b>^H{mfQ1RqQ;~U;TmhOLOnzirRU|r!}INOv*h3KKNedR?WHeJ)fwhLChH)D&qK8!c@ z@+(hN3VYfvKFr-S{+0q~n-Dz-xuCgq%`;Bnj#C7WrJFNO=!8^VO@Un98%2Me0pk~I z#iUr5OUMAI-n!t{-Ui_Z`Y8F3kUE;p*9lwjf+aeE0PAG5N1Sc5BEOwQTqi{ca+}i< zkTVg}?74vlV^W?ZOkX2r@6#EJPru#tZ%A-+f75bXcj)8<(9!wn02z;^p}U%NhhV#- z*|M#AELGh@a&Yh%adE$eJFb6)M~-K??T!tiacpbohW5y7jl$8u)1uKARPcY4={iS) z=H}BZQ!3R|(s&8?<%BH;;1_MaP8HyLN_OD22iO6MZbTx>B^_)H2EJ=~VdQu%5)MaR zbR?_IUwp7gwo&~xqpE`Hq66h+38>DNh^y?mNj32^2=! z;OH#L_q)Gzck`Qrs>lwEmAYO~7A2HGEp#F4^@9HRem|O0VjZswUg;VZ^az&TEI)pj z@3nch8vsX;P}>FFIM>YL*oqA(ZX?}5jXR|_iaVT|b!;00ya-OJe~Qy2$z#Q3OWNJIo_k4loL%#OdZUl?KH5M~J1iNqJ<&!h^3aq=A9!ZJVTBlX7s$;bjEQmls+fgzWWrM>1cw+X0C)&=F zrEiZv?kH$`G0Js>mvEtc{4$8}8E!8j%_EkNlic6$g^;|1pzSqeZ_t3%5;UOg+$YmZ zHN+vQ{{XXd4@{&5B;2;JVY9@uCINq0YXcz^h2IPP590eoCwpWvp$nmu21=9C(l^nY zjC9mNZI*vuXR!MUwGMRAXF(P%%QhC_r=HiVhRSrFEKzcyxa&QgQLg zS3ug7_KAkTB@dj`z@$16@c}8t30Zx)vH?gzpacyjc#^hK^5YHQwEy!#qntUl3cD(H zI>bF^OR*PE?yXlR<7TsIZ8}Yim_H@&v!{7eHBqMCl>nS)QZV6w2kY_&UKlh3!$o1y zO}XaIqDSi?BWI?1p(XcW7I#~}R3LA6`HR(D88qiY6e=UX4RJ`*X+H@hiYeK?(@}Zr z+}$sxIB(Omm(YGfdy90)(h=))KkE4x@9Wh23w=oOFR|TC=pgCPMLJ;J5u@~scm(84 z?#rK&e*=>tr4+MRwo?NM#(zw