
PMIx ASC 2Q 2021
Quarterly Meeting

Joshua Hursey
Spectrum MPI Developer
jhursey@us.ibm.com

Role of PMIx with
Containers in HPC

Environments

2

Overview

− In this presentation:
− Explore the role of PMIx as a conduit cross the container boundary between the runtime

environment, tools, and the PMIx client.
− MPI used as an example PMIx client, but any PMIx client is impacted in a similar way.

− Paper: "Design considerations for building and running containerized MPI Applications”
@ CANOPIE-HPC Workshop 2020.
− What do you need to consider when building & running containerized MPI applications

on HPC systems?
− A few things to recall about containers:

− Processes running in a container instance can directly access the host OS and devices.
− Containers cannot contain the kernel-space parts of libraries only the user-space parts.
− Difference between a containerized process and a bare metal process:

The file system mounts, namespaces, cgroups, capabilities, and security profiles.
− The container runtime defines these aspects with the host OS.

https://www.canopie-hpc.org/program/
https://pmix.github.io/dynamicswg

https://www.canopie-hpc.org/program/
https://pmix.github.io/dynamicswg

3

Launching (containerized) MPI Processes

− The Resource Manager (RM) assists the MPI library in a number of critical tasks:
− Launching MPI processes,
− Enabling processes to discover information about the allocation,
− Facilitating communication establishment between processes,
− Event notifications, and more.

− Direct Launch: Launching (containerized) processes with the system provided launcher
− Examples: Slurm's srun, ALPS' aprun, JSM's jsrun
− Primary advantage: Most tightly integrated/supported on the system. Faster launch times.
− Primary disadvantage: Might force other design decisions depending on capabilities.

− Indirect Launch: Launching (containerized) processes with the MPI provided generic launcher
− Examples: mpirun, mpiexec
− Primary advantage: Launcher can be included in your container image. Use the mapping,

binding, and ordering options you know (and love).
− Primary disadvantage: Requires a two-step launch (daemons then application)

4

One container instance per-process? or per-node?

− One container per-process (1-per-proc): Container as a static application binary
− Use the resource manager to launch 1 container per process on all nodes

− Uses the RM infrastructure on the machine including optimizations for managing images
− Processes are contained from one another: additional container boundary MPI considerations

− One container per-node (1-per-node): Container as a static execution environment for apps
− Resource manager launches 1 container per node, under which all processes are launched
− No boundaries between MPI processes, and only 1 container instance per node

Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

myjob.sh

mpirun -np 6 …
c0

R0

orted

c1

R1

c2

R2

c0

R3

orted

c1

R4

c2

R5

Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

c0

myjob.sh

mpirun -np 6 …

c0

R0

orted

R1 R2

c0

R3

orted

R4 R5

5

PMIx to talk across container boundaries

− PMIx: A community defined, standard API for programming libraries and
tools to interact with the RM in as abstract of a manner as possible.
− Connects RM Servers (like Slurm, JSM) with Tools (like debuggers) and

Clients (like MPI libraries) across container boundaries.
Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

myjob.sh

mpirun -np 6 …
c0

R0

orted

c1

R1

c2

R2

c0

R3

orted

c1

R4

c2

R5

Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

c0

myjob.sh

mpirun -np 6 …

c0

R0

orted

R1 R2

c0

R3

orted

R4 R5

1-
pe

r-
pr

oc
1-

pe
r-

no
de

Clients
(e.g, MPI, OpenSHMEM)

Tools

(e.g, Debuggers, Profilers)

Se
rve
rs

(e.
g,

Slu
rm

, P
RRTE

, IB
M JS

M)

Tools
Scheduler

6

PMIx to talk across container boundaries

− PMIx Implementation outside the container (in the Resource Manager,
Scheduler, Tool, ...) must be able to talk to the PMIx Implementation
inside the container (in the MPI library, launcher program, ...).
− This is a feature of a PMIx implementation, not of the PMIx Standard.

Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

myjob.sh

mpirun -np 6 …
c0

R0

orted

c1

R1

c2

R2

c0

R3

orted

c1

R4

c2

R5

Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

c0

myjob.sh

mpirun -np 6 …

c0

R0

orted

R1 R2

c0

R3

orted

R4 R5

1-
pe

r-
pr

oc
1-

pe
r-

no
de

Clients
(e.g, MPI, OpenSHMEM)

Tools

(e.g, Debuggers, Profilers)

Se
rve
rs

(e.
g,

Slu
rm

, P
RRTE

, IB
M JS

M)

Tools
Scheduler

7

Aging in Place (cross-version considerations)

− As the container image and the HPC system software levels evolve they will drift apart!
− Container "matches" the system (B == A)

− No problems as the software levels match
− Container is "newer than" the system (B > A)

− A newer application uses an established HPC system
− Container is "older than" the system (B < A)

− A HPC system software update causes this with established containers
− A sysadmin approved "Base Image" could help "older than" more easily become "matching"

Container Boundary

Centos 8
./a.out

RHEL 7 MOFED Y.x (kernel module)CUDA A.x (kernel module)

Hardware GPU0 GPU1 GPU2 GPU3 mlx5_0 mlx5_1 mlx5_2

MOFED W.x (user space)CUDA B.x (user space)

mlx5_3

Open MPI

The cross-version issue
with containers is not

exclusive to PMIx

8

Conclusion

• What is the role of PMIx in a containerized HPC environment
• A community defined, standard API connecting programming library

clients, tools, and resource managers in as abstract of a manner as possible.
• Recognize that these three roles may exist across a container boundary so cross-

version issues are a problem. The problem is not exclusive to PMIx.
• PMIx implementations should have a plan for negotiating version differences across

the container boundaries.

Clients
(e.g, MPI, OpenSHMEM)

Tools

(e.g, Debuggers, Profilers)

Se
rve
rs

(e.
g,

Slu
rm

, P
RRTE

, IB
M JS

M)

Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

myjob.sh

mpirun -np 6 …
c0

R0

orted

c1

R1

c2

R2

c0

R3

orted

c1

R4

c2

R5

Launch Node node1 node2 PMIx RM

MPI
container

MPI
Process

c0

myjob.sh

mpirun -np 6 …

c0

R0

orted

R1 R2

c0

R3

orted

R4 R5

1-
pe

r-
pr

oc
1-

pe
r-
no

de

Thank you.

