-
Notifications
You must be signed in to change notification settings - Fork 362
/
Copy pathchapter23.tex
856 lines (774 loc) · 17.8 KB
/
chapter23.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
\chapter{Matrices}
\index{matrix}
A \key{matrix} is a mathematical concept
that corresponds to a two-dimensional array
in programming. For example,
\[
A =
\begin{bmatrix}
6 & 13 & 7 & 4 \\
7 & 0 & 8 & 2 \\
9 & 5 & 4 & 18 \\
\end{bmatrix}
\]
is a matrix of size $3 \times 4$, i.e.,
it has 3 rows and 4 columns.
The notation $[i,j]$ refers to
the element in row $i$ and column $j$
in a matrix.
For example, in the above matrix,
$A[2,3]=8$ and $A[3,1]=9$.
\index{vector}
A special case of a matrix is a \key{vector}
that is a one-dimensional matrix of size $n \times 1$.
For example,
\[
V =
\begin{bmatrix}
4 \\
7 \\
5 \\
\end{bmatrix}
\]
is a vector that contains three elements.
\index{transpose}
The \key{transpose} $A^T$ of a matrix $A$
is obtained when the rows and columns of $A$
are swapped, i.e., $A^T[i,j]=A[j,i]$:
\[
A^T =
\begin{bmatrix}
6 & 7 & 9 \\
13 & 0 & 5 \\
7 & 8 & 4 \\
4 & 2 & 18 \\
\end{bmatrix}
\]
\index{square matrix}
A matrix is a \key{square matrix} if it
has the same number of rows and columns.
For example, the following matrix is a
square matrix:
\[
S =
\begin{bmatrix}
3 & 12 & 4 \\
5 & 9 & 15 \\
0 & 2 & 4 \\
\end{bmatrix}
\]
\section{Operations}
The sum $A+B$ of matrices $A$ and $B$
is defined if the matrices are of the same size.
The result is a matrix where each element
is the sum of the corresponding elements
in $A$ and $B$.
For example,
\[
\begin{bmatrix}
6 & 1 & 4 \\
3 & 9 & 2 \\
\end{bmatrix}
+
\begin{bmatrix}
4 & 9 & 3 \\
8 & 1 & 3 \\
\end{bmatrix}
=
\begin{bmatrix}
6+4 & 1+9 & 4+3 \\
3+8 & 9+1 & 2+3 \\
\end{bmatrix}
=
\begin{bmatrix}
10 & 10 & 7 \\
11 & 10 & 5 \\
\end{bmatrix}.
\]
Multiplying a matrix $A$ by a value $x$ means
that each element of $A$ is multiplied by $x$.
For example,
\[
2 \cdot \begin{bmatrix}
6 & 1 & 4 \\
3 & 9 & 2 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \cdot 6 & 2\cdot1 & 2\cdot4 \\
2\cdot3 & 2\cdot9 & 2\cdot2 \\
\end{bmatrix}
=
\begin{bmatrix}
12 & 2 & 8 \\
6 & 18 & 4 \\
\end{bmatrix}.
\]
\subsubsection{Matrix multiplication}
\index{matrix multiplication}
The product $AB$ of matrices $A$ and $B$
is defined if $A$ is of size $a \times n$
and $B$ is of size $n \times b$, i.e.,
the width of $A$ equals the height of $B$.
The result is a matrix of size $a \times b$
whose elements are calculated using the formula
\[
AB[i,j] = \sum_{k=1}^n A[i,k] \cdot B[k,j].
\]
The idea is that each element of $AB$
is a sum of products of elements of $A$ and $B$
according to the following picture:
\begin{center}
\begin{tikzpicture}[scale=0.5]
\draw (0,0) grid (4,3);
\draw (5,0) grid (10,3);
\draw (5,4) grid (10,8);
\node at (2,-1) {$A$};
\node at (7.5,-1) {$AB$};
\node at (11,6) {$B$};
\draw[thick,->,red,line width=2pt] (0,1.5) -- (4,1.5);
\draw[thick,->,red,line width=2pt] (6.5,8) -- (6.5,4);
\draw[thick,red,line width=2pt] (6.5,1.5) circle (0.4);
\end{tikzpicture}
\end{center}
For example,
\[
\begin{bmatrix}
1 & 4 \\
3 & 9 \\
8 & 6 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 6 \\
2 & 9 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \cdot 1 + 4 \cdot 2 & 1 \cdot 6 + 4 \cdot 9 \\
3 \cdot 1 + 9 \cdot 2 & 3 \cdot 6 + 9 \cdot 9 \\
8 \cdot 1 + 6 \cdot 2 & 8 \cdot 6 + 6 \cdot 9 \\
\end{bmatrix}
=
\begin{bmatrix}
9 & 42 \\
21 & 99 \\
20 & 102 \\
\end{bmatrix}.
\]
Matrix multiplication is associative,
so $A(BC)=(AB)C$ holds,
but it is not commutative,
so $AB = BA$ does not usually hold.
\index{identity matrix}
An \key{identity matrix} is a square matrix
where each element on the diagonal is 1
and all other elements are 0.
For example, the following matrix
is the $3 \times 3$ identity matrix:
\[
I = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
\begin{samepage}
Multiplying a matrix by an identity matrix
does not change it. For example,
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 4 \\
3 & 9 \\
8 & 6 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 4 \\
3 & 9 \\
8 & 6 \\
\end{bmatrix} \hspace{10px} \textrm{and} \hspace{10px}
\begin{bmatrix}
1 & 4 \\
3 & 9 \\
8 & 6 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 4 \\
3 & 9 \\
8 & 6 \\
\end{bmatrix}.
\]
\end{samepage}
Using a straightforward algorithm,
we can calculate the product of
two $n \times n$ matrices
in $O(n^3)$ time.
There are also more efficient algorithms
for matrix multiplication\footnote{The first such
algorithm was Strassen's algorithm,
published in 1969 \cite{str69},
whose time complexity is $O(n^{2.80735})$;
the best current algorithm \cite{gal14}
works in $O(n^{2.37286})$ time.},
but they are mostly of theoretical interest
and such algorithms are not necessary
in competitive programming.
\subsubsection{Matrix power}
\index{matrix power}
The power $A^k$ of a matrix $A$ is defined
if $A$ is a square matrix.
The definition is based on matrix multiplication:
\[ A^k = \underbrace{A \cdot A \cdot A \cdots A}_{\textrm{$k$ times}} \]
For example,
\[
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix}^3 =
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix} \cdot
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix} \cdot
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix} =
\begin{bmatrix}
48 & 165 \\
33 & 114 \\
\end{bmatrix}.
\]
In addition, $A^0$ is an identity matrix. For example,
\[
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix}^0 =
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}.
\]
The matrix $A^k$ can be efficiently calculated
in $O(n^3 \log k)$ time using the
algorithm in Chapter 21.2. For example,
\[
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix}^8 =
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix}^4 \cdot
\begin{bmatrix}
2 & 5 \\
1 & 4 \\
\end{bmatrix}^4.
\]
\subsubsection{Determinant}
\index{determinant}
The \key{determinant} $\det(A)$ of a matrix $A$
is defined if $A$ is a square matrix.
If $A$ is of size $1 \times 1$,
then $\det(A)=A[1,1]$.
The determinant of a larger matrix is
calculated recursively using the formula \index{cofactor}
\[\det(A)=\sum_{j=1}^n A[1,j] C[1,j],\]
where $C[i,j]$ is the \key{cofactor} of $A$
at $[i,j]$.
The cofactor is calculated using the formula
\[C[i,j] = (-1)^{i+j} \det(M[i,j]),\]
where $M[i,j]$ is obtained by removing
row $i$ and column $j$ from $A$.
Due to the coefficient $(-1)^{i+j}$ in the cofactor,
every other determinant is positive
and negative.
For example,
\[
\det(
\begin{bmatrix}
3 & 4 \\
1 & 6 \\
\end{bmatrix}
) = 3 \cdot 6 - 4 \cdot 1 = 14
\]
and
\[
\det(
\begin{bmatrix}
2 & 4 & 3 \\
5 & 1 & 6 \\
7 & 2 & 4 \\
\end{bmatrix}
) =
2 \cdot
\det(
\begin{bmatrix}
1 & 6 \\
2 & 4 \\
\end{bmatrix}
)
-4 \cdot
\det(
\begin{bmatrix}
5 & 6 \\
7 & 4 \\
\end{bmatrix}
)
+3 \cdot
\det(
\begin{bmatrix}
5 & 1 \\
7 & 2 \\
\end{bmatrix}
) = 81.
\]
\index{inverse matrix}
The determinant of $A$ tells us
whether there is an \key{inverse matrix}
$A^{-1}$ such that $A \cdot A^{-1} = I$,
where $I$ is an identity matrix.
It turns out that $A^{-1}$ exists
exactly when $\det(A) \neq 0$,
and it can be calculated using the formula
\[A^{-1}[i,j] = \frac{C[j,i]}{det(A)}.\]
For example,
\[
\underbrace{
\begin{bmatrix}
2 & 4 & 3\\
5 & 1 & 6\\
7 & 2 & 4\\
\end{bmatrix}
}_{A}
\cdot
\underbrace{
\frac{1}{81}
\begin{bmatrix}
-8 & -10 & 21 \\
22 & -13 & 3 \\
3 & 24 & -18 \\
\end{bmatrix}
}_{A^{-1}}
=
\underbrace{
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
}_{I}.
\]
\section{Linear recurrences}
\index{linear recurrence}
A \key{linear recurrence}
is a function $f(n)$
whose initial values are
$f(0),f(1),\ldots,f(k-1)$
and larger values
are calculated recursively using the formula
\[f(n) = c_1 f(n-1) + c_2 f(n-2) + \ldots + c_k f (n-k),\]
where $c_1,c_2,\ldots,c_k$ are constant coefficients.
Dynamic programming can be used to calculate
any value of $f(n)$ in $O(kn)$ time by calculating
all values of $f(0),f(1),\ldots,f(n)$ one after another.
However, if $k$ is small, it is possible to calculate
$f(n)$ much more efficiently in $O(k^3 \log n)$
time using matrix operations.
\subsubsection{Fibonacci numbers}
\index{Fibonacci number}
A simple example of a linear recurrence is the
following function that defines the Fibonacci numbers:
\[
\begin{array}{lcl}
f(0) & = & 0 \\
f(1) & = & 1 \\
f(n) & = & f(n-1)+f(n-2) \\
\end{array}
\]
In this case, $k=2$ and $c_1=c_2=1$.
\begin{samepage}
To efficiently calculate Fibonacci numbers,
we represent the
Fibonacci formula as a
square matrix $X$ of size $2 \times 2$,
for which the following holds:
\[ X \cdot
\begin{bmatrix}
f(i) \\
f(i+1) \\
\end{bmatrix}
=
\begin{bmatrix}
f(i+1) \\
f(i+2) \\
\end{bmatrix}
\]
Thus, values $f(i)$ and $f(i+1)$ are given as
''input'' for $X$,
and $X$ calculates values $f(i+1)$ and $f(i+2)$
from them.
It turns out that such a matrix is
\[ X =
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix}.
\]
\end{samepage}
\noindent
For example,
\[
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
f(5) \\
f(6) \\
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
5 \\
8 \\
\end{bmatrix}
=
\begin{bmatrix}
8 \\
13 \\
\end{bmatrix}
=
\begin{bmatrix}
f(6) \\
f(7) \\
\end{bmatrix}.
\]
Thus, we can calculate $f(n)$ using the formula
\[
\begin{bmatrix}
f(n) \\
f(n+1) \\
\end{bmatrix}
=
X^n \cdot
\begin{bmatrix}
f(0) \\
f(1) \\
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix}^n
\cdot
\begin{bmatrix}
0 \\
1 \\
\end{bmatrix}.
\]
The value of $X^n$ can be calculated in
$O(\log n)$ time,
so the value of $f(n)$ can also be calculated
in $O(\log n)$ time.
\subsubsection{General case}
Let us now consider the general case where
$f(n)$ is any linear recurrence.
Again, our goal is to construct a matrix $X$
for which
\[ X \cdot
\begin{bmatrix}
f(i) \\
f(i+1) \\
\vdots \\
f(i+k-1) \\
\end{bmatrix}
=
\begin{bmatrix}
f(i+1) \\
f(i+2) \\
\vdots \\
f(i+k) \\
\end{bmatrix}.
\]
Such a matrix is
\[
X =
\begin{bmatrix}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
c_k & c_{k-1} & c_{k-2} & c_{k-3} & \cdots & c_1 \\
\end{bmatrix}.
\]
In the first $k-1$ rows, each element is 0
except that one element is 1.
These rows replace $f(i)$ with $f(i+1)$,
$f(i+1)$ with $f(i+2)$, and so on.
The last row contains the coefficients of the recurrence
to calculate the new value $f(i+k)$.
\begin{samepage}
Now, $f(n)$ can be calculated in
$O(k^3 \log n)$ time using the formula
\[
\begin{bmatrix}
f(n) \\
f(n+1) \\
\vdots \\
f(n+k-1) \\
\end{bmatrix}
=
X^n \cdot
\begin{bmatrix}
f(0) \\
f(1) \\
\vdots \\
f(k-1) \\
\end{bmatrix}.
\]
\end{samepage}
\section{Graphs and matrices}
\subsubsection{Counting paths}
The powers of an adjacency matrix of a graph
have an interesting property.
When $V$ is an adjacency matrix of an unweighted graph,
the matrix $V^n$ contains the numbers of paths of
$n$ edges between the nodes in the graph.
For example, for the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (1,1) {$4$};
\node[draw, circle] (3) at (3,3) {$2$};
\node[draw, circle] (4) at (5,3) {$3$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (3) -- (1);
\path[draw,thick,->,>=latex] (4) -- (3);
\path[draw,thick,->,>=latex] (3) -- (5);
\path[draw,thick,->,>=latex] (3) -- (6);
\path[draw,thick,->,>=latex] (6) -- (4);
\path[draw,thick,->,>=latex] (6) -- (5);
\end{tikzpicture}
\end{center}
the adjacency matrix is
\[
V= \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
\end{bmatrix}.
\]
Now, for example, the matrix
\[
V^4= \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 \\
2 & 0 & 0 & 0 & 2 & 2 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]
contains the numbers of paths of 4 edges
between the nodes.
For example, $V^4[2,5]=2$,
because there are two paths of 4 edges
from node 2 to node 5:
$2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 5$
and
$2 \rightarrow 6 \rightarrow 3 \rightarrow 2 \rightarrow 5$.
\subsubsection{Shortest paths}
Using a similar idea in a weighted graph,
we can calculate for each pair of nodes the minimum
length of a path
between them that contains exactly $n$ edges.
To calculate this, we have to define matrix multiplication
in a new way, so that we do not calculate the numbers
of paths but minimize the lengths of paths.
\begin{samepage}
As an example, consider the following graph:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (1,1) {$4$};
\node[draw, circle] (3) at (3,3) {$2$};
\node[draw, circle] (4) at (5,3) {$3$};
\node[draw, circle] (5) at (3,1) {$5$};
\node[draw, circle] (6) at (5,1) {$6$};
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=left:4] {} (2);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:1] {} (3);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=north:2] {} (1);
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=north:4] {} (3);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=left:1] {} (5);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=left:2] {} (6);
\path[draw,thick,->,>=latex] (6) -- node[font=\small,label=right:3] {} (4);
\path[draw,thick,->,>=latex] (6) -- node[font=\small,label=below:2] {} (5);
\end{tikzpicture}
\end{center}
\end{samepage}
Let us construct an adjacency matrix where
$\infty$ means that an edge does not exist,
and other values correspond to edge weights.
The matrix is
\[
V= \begin{bmatrix}
\infty & \infty & \infty & 4 & \infty & \infty \\
2 & \infty & \infty & \infty & 1 & 2 \\
\infty & 4 & \infty & \infty & \infty & \infty \\
\infty & 1 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty \\
\infty & \infty & 3 & \infty & 2 & \infty \\
\end{bmatrix}.
\]
Instead of the formula
\[
AB[i,j] = \sum_{k=1}^n A[i,k] \cdot B[k,j]
\]
we now use the formula
\[
AB[i,j] = \min_{k=1}^n A[i,k] + B[k,j]
\]
for matrix multiplication, so we calculate
a minimum instead of a sum,
and a sum of elements instead of a product.
After this modification,
matrix powers correspond to
shortest paths in the graph.
For example, as
\[
V^4= \begin{bmatrix}
\infty & \infty & 10 & 11 & 9 & \infty \\
9 & \infty & \infty & \infty & 8 & 9 \\
\infty & 11 & \infty & \infty & \infty & \infty \\
\infty & 8 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty \\
\infty & \infty & 12 & 13 & 11 & \infty \\
\end{bmatrix},
\]
we can conclude that the minimum length of a path
of 4 edges
from node 2 to node 5 is 8.
Such a path is
$2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 5$.
\subsubsection{Kirchhoff's theorem}
\index{Kirchhoff's theorem}
\index{spanning tree}
\key{Kirchhoff's theorem}
%\footnote{G. R. Kirchhoff (1824--1887) was a German physicist.}
provides a way
to calculate the number of spanning trees
of a graph as a determinant of a special matrix.
For example, the graph
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (1) -- (4);
\end{tikzpicture}
\end{center}
has three spanning trees:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1a) at (1,3) {$1$};
\node[draw, circle] (2a) at (3,3) {$2$};
\node[draw, circle] (3a) at (1,1) {$3$};
\node[draw, circle] (4a) at (3,1) {$4$};
\path[draw,thick,-] (1a) -- (2a);
%\path[draw,thick,-] (1a) -- (3a);
\path[draw,thick,-] (3a) -- (4a);
\path[draw,thick,-] (1a) -- (4a);
\node[draw, circle] (1b) at (1+4,3) {$1$};
\node[draw, circle] (2b) at (3+4,3) {$2$};
\node[draw, circle] (3b) at (1+4,1) {$3$};
\node[draw, circle] (4b) at (3+4,1) {$4$};
\path[draw,thick,-] (1b) -- (2b);
\path[draw,thick,-] (1b) -- (3b);
%\path[draw,thick,-] (3b) -- (4b);
\path[draw,thick,-] (1b) -- (4b);
\node[draw, circle] (1c) at (1+8,3) {$1$};
\node[draw, circle] (2c) at (3+8,3) {$2$};
\node[draw, circle] (3c) at (1+8,1) {$3$};
\node[draw, circle] (4c) at (3+8,1) {$4$};
\path[draw,thick,-] (1c) -- (2c);
\path[draw,thick,-] (1c) -- (3c);
\path[draw,thick,-] (3c) -- (4c);
%\path[draw,thick,-] (1c) -- (4c);
\end{tikzpicture}
\end{center}
\index{Laplacean matrix}
To calculate the number of spanning trees,
we construct a \key{Laplacean matrix} $L$,
where $L[i,i]$ is the degree of node $i$
and $L[i,j]=-1$ if there is an edge between
nodes $i$ and $j$, and otherwise $L[i,j]=0$.
The Laplacean matrix for the above graph is as follows:
\[
L= \begin{bmatrix}
3 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 2 & -1 \\
-1 & 0 & -1 & 2 \\
\end{bmatrix}
\]
It can be shown that
the number of spanning trees equals
the determinant of a matrix that is obtained
when we remove any row and any column from $L$.
For example, if we remove the first row
and column, the result is
\[ \det(
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2 \\
\end{bmatrix}
) =3.\]
The determinant is always the same,
regardless of which row and column we remove from $L$.
Note that Cayley's formula in Chapter 22.5 is
a special case of Kirchhoff's theorem,
because in a complete graph of $n$ nodes
\[ \det(
\begin{bmatrix}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1 \\
\end{bmatrix}
) =n^{n-2}.\]