-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptalgs.py
233 lines (168 loc) · 3.48 KB
/
optalgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#opt algorithms by lwj
import numpy as np
from numpy import linalg
import math
from math import sqrt,pow
def func(x):
G = NULL
b = NULL
c = NULL
return 1/2*x@G@x + b@x + c
def grad(x):
return NULL
def Hess(x):
return NULL
def phi(alpha,x,d):
return func(x + alpha*d)
def grad_phi(alpha,x,d):
return NULL
def Hess_phi(alpha,x,d):
return NULL
# directions
def get_decent_direction(x):
d = -1*grad(x)
return d
def get_newton_direction(x):
return -1*linalg.inv(Hess(x)) @ grad(x)
def get_conjugate_direction(x,x_old,d_old):
def get_crowder_beta(g_new,g,d):
return g_new @(g_new-g)/( d@(g_new - g))
def get_fletcher_beta(g_new,g,d):
return g_new@g_new / (g@g)
def get_polak_beta(g_new,g,d):
return g_new@(g_new - g)/(g@g)
def get_dixon_beta(g_new,g,d):
return -1*g_new@g_new/(d@g)
g,g_old = grad(x),grad(x_old)
beta = get_crowder_beta(g,g_old,d_old)
return -1*g + beta*d_old
# alphas
def get_interval(x,d):
alpha0 = 0
h0 = 0.01
h = h0
a = alpha0
k = 0
while k<1000:
b = a + h
if phi(b,x,d) < phi(a,x,d):
a = b
h = 2*h
k = k+1
else:
if k = 0:
h = -1*h
k = k+1
else:
return a,b
def get_0618alpha(x,d):
a,b = get_interval(x,d)
tol = 0.01
while True:
lam = a + 0.382*(b-a)
mu = a + 0.618*(b-a)
if phi(lam,x,d) < phi(mu,x,d):
a = a
b = mu
else:
a = lam
b = b
if abs(a-b) < tol:
return (a+b)/2
def get_bisection_alpha(x,d):
a,b = get_interval(x,d)
tol = 0.01
while True:
c = (a+b)/2
if grad_phi(c,x,d) > 0:
b = c
a = a
else:
a = c
b = b
if abs(a-b) < tol:
return (a+b)/2
def get_1pt2rd_alpha(x,d):
a,b = get_interval(x,d)
k = 0
while abs(grad_phi(a,x,d)) > tol:
a = a - grad_phi(a,x,d)/Hess_phi(a,x,d)
k = k + 1
return a
def get_2pt2rd_alpha(x,d):
a,b = get_interval(x,d)
k = 0
while abs(grad_phi(a,x,d)) > tol:
tmp = a
a = a - 0.5*(a-b)*grad_phi(a,x,d)/(grad_phi(a,x,d)-(phi(a,x,d)-phi(b,x,d))/(a-b))
b = tmp
k = k + 1
return a
def get_3pt2rd_alpha(x,d):
a,b = get_interval(x,d)
c = (a+b)/2
k = 0
while abs(grad_phi(a,x,d)) > tol:
tmp1 = a
tmp2 = b
a = 0.5*(a+b) + 0.5*(phi(a,x,d)-phi(b,x,d))*(b-c)*(c-a)/( (b-c)*phi(a,x,d)+(c-a)*phi(b,x,d)+(a-b)*phi(c,d,x) )
b = tmp1
c = tmp2
k = k + 1
return a
# check condition
def check_reduction(x_new,x,d):
if func(x)-func(x_new) > 0:
return True
else:
return False
def check_AG_condition(x_new,x,d):
rho = 0.1
if func(x)-func(x_new) > -1*rho*grad(x)@d and func(x)-func(x_new) < -1*(1-rho)*grad(x)@d:
return True
else:
return False
def check_WP_condition(x_new,x,d):
rho = 0.1
sigma = 0.2
if func(x)-func(x_new) > -1*rho*grad(x)@d and grad(x_new)@d > sigma*grad(x)@d:
return True
else:
return False
# algs
def get_newton_minimal():
dim = 10
tol = 1e-4
k = 0
x = np.random.randn(dim)
while sqrt(grad(x)@grad(x)) > tol:
d = get_newton_direction(x)
alpha = get_bisection_alpha(x,d)
x = x + alpha*d
k = k + 1
return x
def get_gradient_decent_minimal():
dim = 10
tol = 1e-4
k = 0
x = np.random.randn(dim)
while sqrt(grad(x)@grad(x)) > tol:
d = get_decent_direction(x)
alpha = get_bisection_alpha(x,d)
x = x + alpha*d
k = k + 1
return x
def get_conjugate_minimal():
dim = 10
tol = 1e-4
k = 0
x_old = np.random.randn(dim)
d_old = -1*grad(x)
alpha = get_bisection_alpha(x,d)
x = x + alpha*d
while sqrt(grad(x)@grad(x)) > tol:
d = get_conjugate_direction(x,x_old,d_old)
alpha = get_bisection_alpha(x,d)
x = x + alpha*d
k = k + 1
return x