-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcreat_human-study.py
126 lines (95 loc) · 4.24 KB
/
creat_human-study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import math
import pickle
import pprint
import random
from pathlib import Path
from datetime import datetime
import librosa
import numpy as np
import time
import torch
from scipy.signal import savgol_filter
import joblib as jl
import utils
from pymo.preprocessing import *
from pymo.viz_tools import *
from pymo.writers import *
from utils.data_utils import SubtitleWrapper, normalize_string
from utils.train_utils import set_logger
from data_loader.data_preprocessor import DataPreprocessor
from inference_Autoencoder import smoothing_function
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def mk_hs_slots(tags_list, name, transcript_path, dict_, result):
print(name)
transcript = SubtitleWrapper(transcript_path).get()
word_list = []
for wi in range(len(transcript)):
word_s = float(transcript[wi]['start_time'][:-1])
word_e = float(transcript[wi]['end_time'][:-1])
word = transcript[wi]['word']
word = normalize_string(word)
if len(word) > 0:
word_list.append([word, word_s, word_e])
q = 0
for word in word_list:
if word[0] == 'like':
q = q + 1
for tag in tags_list:
for word in word_list:
if word[0] == str.lower(tag):
dict_[tag] += 1
result.append((name, word))
# print("Wait")
return dict_, result
if __name__ == '__main__':
'''
../output/text2embedding/text2embedding_checkpoint_100.bin
/local-scratch/pjomeyaz/GENEA_DATASET/trinityspeechgesture.scss.tcd.ie/data/GENEA_Challenge_2020_data_release/Test_data/Transcripts/TestSeq001.json
../output/DAE/train_DAE_H41/rep_learning_DAE_H41_checkpoint_020.bin
../output/autoencoder/VAE+sim/Dautoencoder_fxw_zinput_VAE_checkpoint_020.bin
../output/text2embedding/text2embedding_300d/text2embedding_300d_checkpoint_160.bin
/local-scratch/pjomeyaz/GENEA_DATASET/trinityspeechgesture.scss.tcd.ie/data/GENEA_Challenge_2020_data_release/Test_data/Transcripts/TestSeq001.json
../output/DAE/train_DAE_H41/rep_learning_DAE_H41_checkpoint_020.bin
../output/autoencoder/VAE+sim/Decoder_trained/autoencoder_decoder_trained_checkpoint_020.bin
../output/text2embedding_ABST/text2embedding_ABST_checkpoint_100.bin
/local-scratch/pjomeyaz/GENEA_DATASET/trinityspeechgesture.scss.tcd.ie/data/GENEA_Challenge_2020_data_release/Test_data/Transcripts/TestSeq001.json
../output/DAE/train_DAE_H41/rep_learning_DAE_H41_checkpoint_020.bin
../output/autoencoder/autoencoder_both_traned_sametime/autoencoder_both_traned_sametime_checkpoint_100.bin
'''
random.seed(datetime.now())
parser = argparse.ArgumentParser()
parser.add_argument("ckpt_path", type=Path)
parser.add_argument("transcript_path", type=Path)
parser.add_argument("rep_learning_checkpoint", type=Path)
parser.add_argument("autoencoder_checkpoint", type=Path)
args = parser.parse_args()
pre_transcript_path = "/local-scratch/pjomeyaz/GENEA_DATASET/trinityspeechgesture.scss.tcd.ie/data/GENEA_Challenge_2020_data_release/Test_data/Transcripts/"
# Read softbank tags
file = open("../output/hs_testcases/softbank_tags.txt", 'r')
tags_list = []
for line in file:
seprated = line.split(',')
tags_list.append(str.lower(seprated[0]))
dict_ = dict()
result = []
for tag in tags_list:
dict_[tag] = 0
for i in reversed(range(1, 11)):
transcript_path = pre_transcript_path + "TestSeq" + str(i).zfill(3) + ".json"
transcript_path = Path(transcript_path)
dict_, result = mk_hs_slots(tags_list, "TestSeq" + str(i).zfill(3), transcript_path, dict_, result)
total_categiry = 0
total = 0
for key in dict_:
if dict_[key]>0:
total_categiry+=1
total += dict_[key]
print(key, ",", dict_[key])
file = open("../output/hs_testcases/word2slot.txt", 'w')
for item in result:
str1 = item[0] + "," + item[1][0] + "," + str(item[1][1]) + "," + str(item[1][2])
file.write(str1 + '\n')
file.flush()
file.close()
print("done!", total, "of", dict_.__len__())