diff --git a/blueprint/src/chapters/0-introduction.tex b/blueprint/src/chapters/0-introduction.tex index 67e4867..0ed649b 100644 --- a/blueprint/src/chapters/0-introduction.tex +++ b/blueprint/src/chapters/0-introduction.tex @@ -36,6 +36,12 @@ \chapter{Introduction} \label{thm:mem} \lean{IsCyclotomicExtension.Rat.Three.Units.mem} \leanok + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ Let $u \in \cc{O}^\times_K$ be a unit. \\\\ Then $u \in \set{1, -1, \eta, -\eta, \eta^2, -\eta^2}$. \end{theorem} @@ -48,7 +54,12 @@ \chapter{Introduction} \label{thm:not_exists_int_three_dvd_sub} \lean{IsCyclotomicExtension.Rat.Three.Units.not_exists_int_three_dvd_sub} \leanok - Let $n \in \Z$. \\\\ + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $n \in \cc{O}_K$. \\\\ Then $3 \notdivides \eta - n$. \end{theorem} \begin{proof} @@ -60,6 +71,12 @@ \chapter{Introduction} \label{lmm:lambda_sq} \lean{IsCyclotomicExtension.Rat.Three.lambda_sq} \leanok + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\\\ $\lambda^2 = -3 \eta$. \end{lemma} \begin{proof} @@ -75,6 +92,13 @@ \chapter{Introduction} \label{lmm:eq_one_or_neg_one_of_unit_of_congruent} \lean{IsCyclotomicExtension.Rat.Three.eq_one_or_neg_one_of_unit_of_congruent} \leanok + Let $K = \Q(\zeta_3)$ be the third cyclotomic field. \\ + Let $\cc{O}_K = \Z[\zeta_3]$ be the ring of integers of $K$. \\ + Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\ + Let $\zeta_3 \in K$ be any primitive third root of unity. \\ + Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta_3 \in K$. \\ + Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\ + Let $u \in \cc{O}^\times_K$ be a unit. \\\\ If $\exists n \in \Z$ such that $\lambda^2 \divides u - n$, then $u = 1 \lor u = -1$. \\ This is a special case of the Kummer's Lemma (\Cref{lmm:by_kummer}).