-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfastchem_tools.py
95 lines (78 loc) · 3.04 KB
/
fastchem_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import os, csv, ctypes, io, tempfile, sys
from contextlib import contextmanager
import conversions as cnvs
def saveChemistryOutput(
filename,
temperature,
pressure,
fastchem_output,
fastchem,
tstep,
tracked_species=None,
):
"""
Mimics the file save process from FastChem's C++ library.
Edited to return the mean molecular weight, and the mole fractions of species
being tracked in evolve.
Args:
filename (str): file name/path being written out to.
temperature (float): atmospheric temperature
pressure (float): surface pressure
fastchem_output (class): fastchem output data from python run
fastchem (class): fastchem python object
tstep (float): the timestep in evolve
tracked_species (lst): the species being tracked in evolve.
Returns:
fastchem_output.mean_molecular_weight (float): mean moleuclar weight
tracked_sp (dict): tracked species with associated mole fractions.
"""
# total gas particle number density from the ideal gas law
# used to convert the number densities to mixing ratios
const_k = 1.3806504e-16 # boltzmann's constant in erg K-1, to match exactly the C++ version. Internet & astropy say 1.380649e-16
gas_number_density = pressure * 1e6 / (const_k * temperature)
if tracked_species != None:
tracked_sp = {
cnvs.evo2fc_names(sp): j
for sp, j in zip(tracked_species, range(len(tracked_species)))
}
else:
tracked_sp = None
# calculate the mixing ratios from the number densities
mixing_ratios = np.array(fastchem_output.number_densities) / gas_number_density
fc_start = [
tstep,
pressure,
temperature,
fastchem_output.total_element_density[0],
gas_number_density,
fastchem_output.mean_molecular_weight[0],
]
file_exists = os.path.isfile("outputs/" + filename)
if file_exists:
with open("outputs/" + filename, "a") as f_out:
write_fout = csv.writer(f_out, delimiter="\t")
write_fout.writerow(fc_start + list(mixing_ratios[0]))
else:
titles = [
"t_step",
"P (bar)",
"T (K)",
"n_<tot> (cm-3)",
"n_g (cm-3)",
"m (g/mol)",
] + [
fastchem.getGasSpeciesSymbol(j)
for j in range(fastchem.getGasSpeciesNumber())
]
with open("outputs/" + filename, "w") as f_out:
write_fout = csv.writer(f_out, delimiter="\t")
write_fout.writerow(titles)
write_fout.writerow(fc_start + list(mixing_ratios[0]))
if tracked_species != None:
for j in range(fastchem.getGasSpeciesNumber()):
if fastchem.getGasSpeciesSymbol(j) in tracked_sp.keys():
tracked_sp[fastchem.getGasSpeciesSymbol(j)] = mixing_ratios[0, j]
for evo_n in tracked_species:
tracked_sp[evo_n] = tracked_sp.pop(cnvs.evo2fc_names(evo_n))
return fastchem_output.mean_molecular_weight[0], tracked_sp