-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathplot_da_res.py
121 lines (104 loc) · 5.66 KB
/
plot_da_res.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: [email protected]
Title: plot_da_res.py script
"""
## import modules
import numpy as np
import subprocess
import pandas as pd
import xarray as xr
import matplotlib.pyplot as plt
import random
def plot_summary(var, Year, obs, fp, Ctl, beta, tdect,tattr, sigma, base_per, bg, reg, mem, Cons_test, Ctype, inpath, outpath, ind_0):
"""
plot SUMMARY
"""
varlist = subprocess.check_output(['bash', '-c', "grep -w "+var+' '+inpath+"/var_list.csv"]).decode().strip().split(',')
varname = varlist[1]
longname = varlist[5]
modname = varlist[4]
## load data
aoa = xr.open_dataset(inpath+'/MPI-ESM-LR_hist_AOA_'+modname+'.nc').squeeze()
rcp = xr.open_dataset(inpath+'/MPI-ESM-LR_hist_esmrcp85_'+modname+'.nc').squeeze()
if bg == 'stat':
ctl = xr.open_dataset(inpath+'/MPI-ESM-LR_esmControl_'+modname+'_r1i1p1.nc').squeeze()
ctl = xr.merge([xr.concat([ctl[varname][0:250], ctl[varname][250:500].assign_coords(time=ctl[varname][0:250].coords['time']), ctl[varname][500:750].assign_coords(time=ctl[varname][0:250].coords['time']), ctl[varname][750:1000].assign_coords(time=ctl[varname][0:250].coords['time'])], dim='ens')])
else:
ctl = xr.open_dataset(inpath+'/MPI-GE-LR_hist_rcp85_'+modname+'.nc').squeeze()
## plotting routine
plt.figure(facecolor='white', figsize=(14,14))
## plot raw data time series
plt.subplot(221)
if bg == 'stat':
for c in range(ctl[varname].shape[0]):
l1,=plt.plot(aoa['time.year'].values, ctl[varname][c, :], color=tuple(np.ones(3)*(0.4 + 0.2 * np.random.rand(1))), label='MPI-ESM-LR-esmcntl, 1000 years')
else:
for c in range(ctl[varname].shape[1]):
l1,=plt.plot(aoa['time.year'].values, ctl[varname][:, c],color=tuple(np.ones(3)*(0.4 + 0.2 * np.random.rand(1))),label='MPI-GE-RCP8.5, 100 Ens.')
for e in range(rcp[varname].shape[1]):
l2,=plt.plot(aoa['time.year'].values, rcp[varname][:, e], color=tuple(np.array([1, 0.08 * np.random.rand(1).squeeze(), 0])), label='MPI-ESM-LR-RCP8.5, 3 Ens.')
l3,=plt.plot(aoa['time.year'].values, aoa[varname][:, e], color=tuple(np.array([0, 0.08 * np.random.rand(1).squeeze(), 1])), label='MPI-ESM-LR-AOA, 3 Ens.')
a=plt.ylim()
plt.ylim((a[0], a[1] + 0.1 * (a[1] - a[0])))
plt.legend(handles=[l1, l2, l3], loc=2, frameon=False, fontsize=12)
plt.xlim((1850, 2099))
plt.title('Global mean time series data', fontsize=12)
plt.ylabel(longname)
plt.xlabel('Year')
## plot anomalies and DA input
plt.subplot(222)
r = Ctl.shape[0] / len(range(Year[ind_0] - base_per, 2099))
for c in range(int(r)):
m1,=plt.plot(range(Year[ind_0]-base_per, 2099), Ctl[c*(len(range(Year[ind_0]-base_per, 2099))):((c+1)*(len(range(Year[ind_0]-base_per, 2099))))], color=tuple(np.ones(3)*(0.4 + 0.2 * random.random())), label='CTL')
m2,=plt.plot(Year[:], obs, color=tuple(np.array([1, 0.08 * random.random(), 0])), label='OBS')
if fp.shape[0]== 2:
m3,=plt.plot(Year[:], fp[0, :], color=tuple(np.array([0, 0.08 * random.random(),1])), label='FP1')
m4,=plt.plot(Year[:], fp[1, :], color=tuple(np.array([0.4, 0.08 * random.random(),1])), label='FP2')
plt.legend(handles=[m1, m2, m3, m4],loc=3,frameon=False,fontsize=12)
else:
m3,=plt.plot(Year[:], fp, color=tuple(np.array([0, 0.08 * random.random(),1])), label='FP')
plt.legend(handles=[m1, m2, m3], loc=3, frameon=False, fontsize=12)
a=plt.ylim()
plt.vlines(Year[ind_0], a[0], a[1], linestyles='dotted')
plt.xlim((2000, 2100))
plt.ylim((a[0], a[1]))
plt.title("Input data for DA analysis, sigma="+str(sigma).replace('[','').replace(']',''), fontsize=12)
plt.ylabel("$\Delta$ "+longname)
plt.text(2042, a[0]+(a[1]-a[0])*0.05, ("Base period: "+str(Year[ind_0]-base_per).replace('[','').replace(']','')+"-"+str(Year[ind_0])))
## plot beta and DA output
plt.subplot(223)
inferior=beta[:, 0, 0]
superior=beta[:, 2, 0]
beta_cor=beta[:, 1, 0]
plt.fill_between(Year[ind_0:], inferior, superior, where=superior>inferior, facecolor=(0.8,0.8,0.8))
plt.plot(Year[ind_0:], inferior, Year[ind_0:] , superior, color=(0.5,0.5,0.5))
plt.plot(Year[ind_0:], beta_cor, color='r')
plt.plot([Year[ind_0], Year[-1]], [0, 0], 'k--')
plt.plot([Year[ind_0], Year[-1]], [1, 1], 'k--')
plt.title('Spatio-temporal fingerprint amplitude $\\beta$', fontsize=12)
plt.vlines(tdect[0], -2, 3, linestyles='dotted')
plt.vlines(tattr[0], -2, 3, linestyles='dotted')
plt.text(2052, -0.75,("Time of detection: "+str(int(tdect[0]))))
plt.xlim((Year[ind_0], 2099))
plt.ylabel("$\\beta$ ", fontsize=18)
plt.ylim((-2, 3))
## plot pval and summary
plt.subplot(224)
pval_cor=beta[:, 3, 0]
plt.plot(Year[ind_0:], pval_cor, color='k')
plt.plot([Year[ind_0], Year[-1]], [0.05, 0.05], 'k--')
plt.ylabel("p-value")
plt.ylim((0, 1))
plt.xlim((Year[ind_0], 2099))
plt.title('Residual Consistency Check', fontsize=12)
plt.text(2045, 0.9, "Type of regression: "+reg)
plt.text(2045, 0.7, "Cons_test: "+Cons_test)
if Ctype == 'C0':
plt.text(2045, 0.5, "Filter: Moving average")
else:
plt.text(2045, 0.5, "Filter: Trend-based")
## save figure
plt.savefig(outpath+"/summary_"+varname+"_"+Ctype+"_"+reg+"_sigma_"+str(sigma).replace('[','').replace(']','')+"_base_"+str(base_per).replace('[','').replace(']','')+"_mem_"+str(mem).replace('[','').replace(']','')+".pdf", bbox_inches='tight')
#plt.show()