-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_deriveGrad_LogPost.m
83 lines (61 loc) · 2.47 KB
/
test_deriveGrad_LogPost.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
% test_deriveGrad_LogPost.m
%
% Test out computation of gradient of the log-likelihood and log-prior terms in the log-evidence
clear; clf; clc;
addpath utils;
addpath inference;
% 1. Set up simulated example
% set true weights
nw = 5; % number of weights
varpriortrue = 1; % true prior variance of weights
wts = randn(nw,1)*sqrt(varpriortrue); % Sample weights from prior
Iw = eye(nw);
% Make stimuli & simulate Bernoulli GLM response
nstim = 25; % number of stimuli
xx = randn(nstim,nw); % inputs
xproj = xx*wts; % projection of stimulus onto weights
pp = logistic(xproj); % probability of 1
yy = rand(nstim,1)<pp; % Bernoulli outputs
%% 2. Compute MAP estimate of weights given true hyperparams
theta0 = 2; % prior variance at which to compute initial MAP estimate & Laplace evidence
[wmap0,~,Hpost0] = compMAPwts_bernoulliGLM(xx,yy,theta0); % map estimate given theta0
%% 3. Compute gradient d wmap / dtheta
% Compute gradient of wmap: H^{-1} w_map / theta^2
dwmap_dtheta = (Hpost0\wmap0)/theta0^2;
%% 4. Compute gradient of log-posterior w.r.t. theta
% Finite differencing
% ===================
% Evaluate log-post at theta0
% -------------------------------
logpost0 = .5*logdet(Hpost0)-(nw/2)*log(2*pi); % log-posterior at wmap
% Update theta & wmap
% -------------------
dtheta = .01; % change in theta
theta1 = theta0+dtheta; % new theta
[wmap1,~,Hpost1] = compMAPwts_bernoulliGLM(xx,yy,theta1); % Compute new MAP estimate
% Evaluate log-post at theta1
% -------------------------------
logpost1 = .5*logdet(Hpost1)-(nw/2)*log(2*pi); % log-posterior at wmap
% Compute finite diff
% -------------------------------
dlogpost_empir = (logpost1-logpost0)/dtheta;
% Analytic gradient
% =================
%%% Direct term %%%%
dlogpost_direct = -0.5*trace(inv(Hpost0))/theta0.^2;
%%% Indirect term %%%
dH = compHessDeriv_bernoulliGLM(wmap0,xx,dwmap_dtheta);
dlogpost_indirect = 0.5*sum(sum(inv(Hpost0).*dH));
% Sum direct and indirect terms
dlogpost_dtheta = dlogpost_direct + dlogpost_indirect;
% Print comparison
% -------------------
fprintf('\nDeriv of log-posterior\n');
fprintf('-----------------------------------------\n');
fprintf(' analytical: %.5f\n', dlogpost_dtheta);
fprintf('finite-diff: %.5f\n', dlogpost_empir);
% % ===================================================================
% % uncomment to check that the function version agrees
% [dlogEv,dlogEv_terms] = compLogLaplaceEv_grad_bernoulliGLM(theta0,xx,yy);
%
% [dlogpost_dtheta,dlogEv_terms(3)]