-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_deriveGrad_LogLaplaceEv.m
53 lines (37 loc) · 1.52 KB
/
test_deriveGrad_LogLaplaceEv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% test_deriveGrad_LogPost.m
%
% Test out computation of gradient of the log-likelihood and log-prior terms in the log-evidence
clear; clf; clc;
addpath utils;
addpath inference;
% 1. Set up simulated example
% set true weights
nw = 5; % number of weights
varpriortrue = 1; % true prior variance of weights
wts = randn(nw,1)*sqrt(varpriortrue); % Sample weights from prior
Iw = eye(nw);
% Make stimuli & simulate Bernoulli GLM response
nstim = 25; % number of stimuli
xx = randn(nstim,nw); % inputs
xproj = xx*wts; % projection of stimulus onto weights
pp = logistic(xproj); % probability of 1
yy = rand(nstim,1)<pp; % Bernoulli outputs
%% 2. Compute derivative of log laplace evidence estimate of weights given true hyperparams
theta0 = 2; % prior variance at which to evaluate gradient
% compute gradient using analytic formulas
dlogEv = compLogLaplaceEv_grad_bernoulliGLM(theta0,xx,yy);
%% 3. Compare to finite differencing version
% compute map estimate at theta0
[wmap0,mstruct] = compMAPwts_bernoulliGLM(xx,yy,theta0); % map estimate given theta0
ev0 = compLogLaplaceEv(theta0,mstruct);
% compute MAP estimate at theta0 + dtheta
dtheta = .01; % change in theta
theta1 = theta0+dtheta; % new theta
ev1 = compLogLaplaceEv(theta1,mstruct);
% Compute finite difference
dlogEv_empir = (ev1-ev0)/dtheta;
%% 4. print comparison
fprintf('\nDeriv of log-posterior\n');
fprintf('-----------------------------------------\n');
fprintf(' analytical: %.5f\n', dlogEv);
fprintf('finite-diff: %.5f\n', dlogEv_empir);