-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_compareLaplaceEvidence.m
183 lines (132 loc) · 5.93 KB
/
test_compareLaplaceEvidence.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
% examine log-evidence for Bernoulli GLM using Laplace approximation and
% decoupled Laplace
% 1. Set up simulated example
addpath utils;
% Set dimensions and hyperparameter
varprior = 2; % prior variance of weights
nw = 20; % number of weights
nstim = 200; % number of stimuli
vlims = log10([.1, 5]); % limits of grid over sig^2 to consider
theta0 = 1; % prior variance for DLA
% Sample weights from prior
wts = randn(nw,1)*sqrt(varprior);
% Make stimuli & simulate Bernoulli GLM response
xx = randn(nstim,nw); % inputs
xproj = xx*wts; % projection of stimulus onto weights
pp = logistic(xproj); % probability of 1
yy = rand(nstim,1)<pp; % Bernoulli outputs
%% 2. Compute MAP estimate of weights given true hyperparams
% Make struct with log-likelihood and prior function pointers
mstruct.neglogli = @neglogli_bernoulliGLM; % neg-logli function handle
mstruct.logprior = @logprior_stdnormal; % log-prior function handle
mstruct.liargs = {xx,yy}; % arguments for log-likelihood
mstruct.priargs = {}; % extra arguments for prior (besides theta)
% make function handle
lfunc = @(w)(neglogpost_GLM(w,varprior,mstruct));
% intial guess for weights (random)
w0 = randn(nw,1)*.1;
% Set optimization parameters for fminunc
opts = optimoptions('fminunc','algorithm','trust-region','SpecifyObjectiveGradient',true,'HessianFcn','objective','display','off');
% % Optional: Check that analytic gradient and Hessian are correct
% HessCheck(lfunc, w0);
% Compute MAP estimate
[wmap,neglogpost] = fminunc(lfunc,zeros(nw,1),opts);
% Make Plot
subplot(211);
tt = 1:nw; % grid of coefficient indices
plot(tt,wts,tt,wmap);
title('true weights and MAP estimate'); box off;
xlabel('coefficient #'); ylabel('weight');
legend('true weights', 'MAP estim');
%% 3. Evaluate Laplace Evidence on a grid
% set of grid values to consider
ngrid = 25; % number of grid points
vargrid = logspace(vlims(1),vlims(2),ngrid);
% allocate storage
logLaplaceEv = zeros(ngrid,1);
for jj = 1:ngrid
logLaplaceEv(jj) = compLogLaplaceEv(vargrid(jj),mstruct,wmap,opts);
end
% Find maximum (from grid values);
[logLaplEvMax,ivarHat]=max(logLaplaceEv);
varHat = vargrid(ivarHat);
subplot(212);
plot(vargrid,logLaplaceEv,varHat,logLaplEvMax,'*');
xlabel('sig^2'); ylabel('log-evidence');
title('log-evidence vs. theta'); box off;
%theta0=varHat
%% 4. Now Evaluate Approximate Laplace Evidence (ALE) on a grid
% First, compute MAP estimate given this value of theta
lfunc = @(w)(neglogpost_GLM(w,theta0,mstruct));
wmap0 = fminunc(lfunc,zeros(nw,1),opts); % get MAP estimate
% Get Hessian of negative log-likelihood term
[negL0,~,ddnL0] = mstruct.neglogli(wmap0,mstruct.liargs{:});
% Get Hessian of log-prior (note this is NOT the negative log-prior)
[logp,~,negCinv] = mstruct.logprior(wmap0,theta0,mstruct.priargs{:});
% Compute log-evidence using Laplace approximation
postHess0 = ddnL0-negCinv; % posterior Hessian
logpost = .5*logdet(postHess0)-(nw/2)*log(2*pi); % log-posterior at wmap
logEv0 = (-negL0) + logp - logpost; % log-evidence
% Compute Hessian of negative log-likelihood times log-likelihood mean
ddnLmu0 = postHess0*wmap0;
% ================================================================
% ALE moving
% ================================================================
log2piconst = - nw/2*log(2*pi); % normalizing constant for log prior & posterior
% allocate storage for approximate Laplace Evidence (ALE)
logALE_moving = zeros(ngrid,1);
for jj = 1:ngrid
% make inverse prior covariance
Cinv_moving = (1/vargrid(jj))*eye(nw); % inverse prior covariance
logdetCinv_moving = -nw*log(vargrid(jj)); % log-determinant of inv prior cov
% Compute updated posterior Hessian
Hess_moving = (ddnL0+Cinv_moving);
% Compute updated w_MAP
wmap_moving = Hess_moving\ddnLmu0;
% Compute log prior
logp_moving = -.5*sum(wmap_moving.^2)/vargrid(jj) ...
+ .5*logdetCinv_moving + log2piconst;
% Compute negative log-likelihood (ONLY NEEDED FOR MOVING)
logL_moving = -mstruct.neglogli(wmap_moving,mstruct.liargs{:});
% Compute log posterior
logpost_moving = .5*logdet(Hess_moving) + log2piconst; % (note quadratic term is 0)
% Compute ALE
logALE_moving(jj) = logL_moving + logp_moving - logpost_moving;
end
%% ================================================================
% ALE fixed
% ================================================================
% allocate storage
logALE_fixed = zeros(ngrid,1);
% compute squared L2 norm of wmap0 (needed for prior term)
norm2wmap0 = sum(wmap0.^2);
for jj = 1:ngrid
% make inverse prior covariance
Cinv_giventheta = (1/vargrid(jj))*eye(nw); % inverse prior covariance
logdetCinv_giventheta = -nw*log(vargrid(jj)); % log-determinant of inv prior cov
% Compute updated posterior Hessian
Hess_giventheta = (ddnL0+Cinv_giventheta);
% Compute updated w_MAP
wmap_giventheta = Hess_giventheta\ddnLmu0;
% Compute prior term
logp_giventheta = -.5*norm2wmap0/vargrid(jj) + ...
.5*logdetCinv_giventheta + log2piconst;
% % % Compute posterior term (MISTAKE HERE)
% logpost_giventheta = -0.5*sum((wmap0-wmap_giventheta).^2) ...
% + .5*logdet(Hess_giventheta)+logpriconst;
% Compute posterior term
dwmap = (wmap0-wmap_giventheta); % difference from mean vector
logpost_giventheta = -0.5*dwmap'*Hess_giventheta*dwmap ...
+ .5*logdet(Hess_giventheta)+log2piconst;
% Compute ALE
logALE_fixed(jj) = -negL0 + logp_giventheta - logpost_giventheta;
end
% Make plot of LE and ALE
subplot(212);
plot(vargrid,logLaplaceEv,vargrid,logALE_moving,...
vargrid,logALE_fixed, theta0,logEv0,'ko',...
varHat,logLaplEvMax,'*');
xlabel('prior variance (\sigma^2)'); ylabel('log-evidence');
title('log-evidence vs \sigma^2'); box off;
legend('Laplace Evidence', 'ALE (moving)', 'ALE (fixed)', 'theta_0','theta max');
set(gca,'ylim',[min(logLaplaceEv)-1,max([logALE_moving;logLaplaceEv])+1]);