-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAOT_script_estWgt.m
822 lines (620 loc) · 20.1 KB
/
AOT_script_estWgt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
% AOT_script_estWgt.m
% time-varying psychophysical weight estimate, from past observations
% with learning hyperparameters
% for NIPS paper: Adaptive optimal training of animal behavior (May 2016)
% rearranged to share (Apr 2017)
% 2016-2017 Ji Hyun Bak
%% initialize
clear all;
clc;
setpaths;
setcolors;
basedir = 'Test/';
datadir = [basedir,'Saved/'];
if(~exist(datadir,'dir'))
mkdir(datadir);
end
%% -------- fit with random walk --------
%% (A-B) single-weight simulation: w(t) estimate, repetition test
simname = [datadir,'simtest-1D.mat'];
if(exist(simname,'file'))
disp('file already exists.');
else
% set parameters
N = 2000; % number of trials
sigbin = -6;
sigma = 2^sigbin; % random walk width
% generate w(t) with random walk (change in w is Gaussian random variable)
diffw = randn(N,1)*sigma;
w = cumsum(diffw);
% use a simple model p(t) = 1/(1+exp(-w(t)))
mylogistic = @(wgt) 1./(1+exp(-wgt));
p = mylogistic(w);
fullP = [1-p p];
numRep = 5;
repCell = cell(numRep,2);
% vary sigma
sigmaList = 2.^((sigbin-2):0.5:(sigbin+2));
setGoodRand;
for nr = 1:numRep
disp(' ');
disp(['rep ',num2str(nr)]);
% Simulate binary choices
m = mnrnd(1,fullP); % binary vector
y = m*[0;1]; % response
%%% MAP estimate & marginal likelihood maximization
wModeList = zeros(N,numel(sigmaList)); % MAP estimate of weight parameter
evdList = zeros(numel(sigmaList),1); % evidence (marginal likelihood)
showopt = 0;
for ns = 1:numel(sigmaList)
mysigma = sigmaList(ns);
display(['sigma 2^',num2str(log2(mysigma))]);
%%% MAP estimate
prsInit = 0;
sigInit = mysigma;
fullfitOpts = struct('showopt',showopt,'prsInit',prsInit,'sigInit',sigInit);
newdat = struct('y',y);
[wMode,~,logEvd,~] = getMAP_RWprior(newdat,mysigma,fullfitOpts);
wModeList(:,ns) = wMode;
evdList(ns) = logEvd;
end
disp('done.');
repCell{nr,1} = wModeList;
repCell{nr,2} = evdList;
end
% %%% save data
save(simname,'repCell','sigmaList','N','sigbin','w');
end
%% (C-D) rat data fit / max-evd
% load dataset
tempVar = load([basedir,'testdat.mat']);
alldat = tempVar.alldat;
dims = tempVar.dims;
% truealpha = tempVar.alpha;
truesigma = tempVar.sigma;
clear tempVar
setTag = '_sim';
sigInit = 1;
hterm = 1; % single-step-back history
allsigbin = -8:-4;
logEvdList = -Inf(numel(allsigbin),1);
wModeList = cell(numel(allsigbin),1);
for ns = 1:numel(allsigbin)
mysigbin = allsigbin(ns);
filename = [datadir,'fit',setTag,'_h',num2str(hterm),...
'_sig2n',num2str(abs(mysigbin)),'_siginit',num2str(sigInit),'.mat'];
if(exist(filename,'file'))
%%% load pre-estimated w(t)
fitVar = load(filename);
logEvd = fitVar.logEvd;
wArray = fitVar.wArray;
disp(filename);
else
%%% estimate w(t) including history effect
% append history variable
if(hterm==0)
newdat = struct('x',alldat.x,'y',alldat.y,'s',alldat.s,'allys',alldat.allys);
elseif(hterm==1)
% include z as input
newdat = struct('x',[alldat.x alldat.z],'y',alldat.y,'s',alldat.s,'allys',alldat.allys);
else
error('option hterm not recognized.');
end
% set dimensions
ydim = numel(newdat.allys)-1;
gdim = size(newdat.x,2)+1;
K = ydim*gdim;
N = numel(newdat.y);
% set fit options
showopt = 1;
prsInit = zeros(K,1);
fullfitOpts = struct('showopt',showopt,'prsInit',prsInit,'sigInit',sigInit);
% run estimate
disp(['2^',num2str(mysigbin)]);
mysigma = 2^mysigbin;
[wMode,Hess,logEvd] = getMAP_RWprior(newdat,mysigma,fullfitOpts);
wArray = reshape(wMode,[N K]);
save(filename,'alldat','dims','mysigbin','sigInit','wArray','Hess','logEvd');
disp('done.');
end
logEvdList(ns) = logEvd;
wModeList{ns} = wArray;
end
clear fitVar
[~,nsmax] = max(logEvdList);
bestsigbin = allsigbin(nsmax);
wArray = wModeList{nsmax};
clear wModeList
%%% store data for plot
ratFit = struct('evd',logEvdList,'wArray',wArray,...
'allsigbin',allsigbin,'bestsigbin',bestsigbin);
%% (E) rat data BIC
N = numel(alldat.y);
maxtau = 5;
tauList = 0:maxtau;
KnumList = 4+tauList;
BIClist = zeros(numel(tauList),1);
filename = [datadir,'HTdat',setTag,'_maxT',num2str(maxtau),'.mat'];
if(exist(filename,'file'))
bVar = load(filename);
logliList = bVar.logliList;
clear bVar
disp('loaded from existing file.');
else
%%% Model selection: how many history terms to include?
% find MAP estimate for the time-varying weight sequence
% (with varying number of history terms)
xall = alldat.x;
xdiff = sign(xall(:,2)-xall(:,1));
sigInit = 1;
sigbinList = log2(truesigma); % fow now, only at the true sigma
%%% try up to tau-back terms
wArray_tauvar = cell(numel(sigbinList),numel(tauList));
evdList = zeros(numel(sigbinList),numel(tauList));
logliList = zeros(numel(sigbinList),numel(tauList));
for nt = 1:numel(tauList)
tau = tauList(nt);
disp(' ');
% set up stimulus history
xhist = zeros(N,tau); % if tau==0, empty matrix
for nh = 1:tau % if tau==0, xhist is left empty
xhist(:,nh) = [zeros(nh,1); xdiff(1:(end-nh))];
end
% include stimulus history as input
newdat = struct('x',[alldat.x xhist],...
'y',alldat.y,'s',alldat.s,'allys',alldat.allys);
ydim = numel(newdat.allys)-1;
gdim = size(newdat.x,2)+1;
K = ydim*gdim; % changes with tau
% prepare for MAP estimate
showopt = 1;
prsInit = zeros(K,1);
fullfitOpts = struct('showopt',showopt,'prsInit',prsInit,'sigInit',sigInit);
for ns = 1:numel(sigbinList)
mysigbin = sigbinList(ns);
mysigma = 2^mysigbin;
display(['tau ',num2str(tau),'; sigma ',num2str(mysigma)]);
[wMode,~,logEvd,llstruct] = getMAP_RWprior(newdat,mysigma,fullfitOpts);
wArray = reshape(wMode,[N K]);
wArray_tauvar{ns,nt} = wArray;
evdList(ns,nt) = logEvd;
logliList(ns,nt) = llstruct.logli;
end
end
disp(' ');
disp('done.');
save(filename,'newdat','sigbinList','sigInit','tauList',...
'wArray_tauvar','evdList','logliList');
disp('saved to file.');
end
myBIC = log(N)*KnumList - 2*logliList;
BIClist(:) = myBIC;
%% plot together
figure(1)
set(gcf,'Position',[50 50 1200 500])
clf;
% set subplot sizes
hnum = 4.5; % number of columns
vnum = 2; %2; % number of rows
hmarg0 = 0.08; % left/right margin
vmarg0 = 0.10; %0.06; % bottom/top margin
hmarg1 = 0.05; %0.05; % column spacing
vmarg1 = 0.14; % row spacing
hsize = (1-hmarg0*2-hmarg1*(hnum-1))/hnum; %0.4; % panel width
vsize = (1-vmarg0*2-vmarg1*(vnum-1))/vnum; %0.4; % panel height
%%% (A) simulated dataset test
sigma = 2^-6;
numRep = 5;
simname = [datadir,'simtest-1D.mat'];
sVar = load(simname);
repCell = sVar.repCell;
sigmaList = sVar.sigmaList;
w = sVar.w;
N = size(w,1);
% -- weight estimate ----
nr = 5;
wModeList = repCell{nr,1};
evdList = repCell{nr,2};
[~,kmax] = max(sum(evdList,2));
wrange = [min([w;wModeList(:,kmax)]) max([w;wModeList(:,kmax)])];
wrange = [floor(10*wrange(1))/10 ceil(10*wrange(2))/10];
wrange = wrange + diff(wrange)*[-0.3 0.1];
axes('Position',[hmarg0 vmarg0+vsize+vmarg1 hsize vsize]);
plot(1:N,w,'k-','LineWidth',2)
hold on
%plot(1:N,y,'k.','MarkerSize',10,'LineWidth',1.5)
plot(1:N,wModeList(:,kmax),'r--','LineWidth',2.5)
hold off
xlim([0 N])
ylim(wrange)
% title('model parameter')
legend('true weight','best fit','Location','SouthEast')
legend('boxoff')
xlabel('trials')
ylabel('weight w')
axis square
% -- evidence maximization --
axes('Position',[hmarg0+hsize+hmarg1 vmarg0+vsize+vmarg1 hsize vsize]);
plot(log(sigmaList)/log(2),evdList-evdList(kmax),'ko-','LineWidth',2)
hold on
ylm0 = ylim;
plot((log(sigmaList(kmax))/log(2))*[1 1],ylm0,'r--','LineWidth',2)
plot((log(sigma)/log(2))*[1 1],ylm0,'r:','LineWidth',2)
hold off
ylim(ylm0)
ytk0 = get(gca,'YTick');
set(gca,'YTick',ytk0(rem(ytk0,4)==0));
xlabel('log_{2} \sigma')
ylabel('log evd. (rel.)')
% title('log evidence')
legend('log evd','max-evd','true \sigma','Location','South')
%legend('boxoff')
axis square
%%% repetition test
% -- repeated w --
axes('Position',[hmarg0 vmarg0 hsize vsize]);
plot(1:N,w,'k-','LineWidth',2)
hold on
for nr = 1:numRep
wModeList = repCell{nr,1};
evdList = repCell{nr,2};
[~,kmax] = max(evdList);
plot(1:N,wModeList(:,kmax),'--','color',0.5*[1 1 1],'LineWidth',2)
hold on
end
plot(1:N,w,'k-','LineWidth',2)
hold off
xlim([0 N])
ylim(wrange)
xlabel('trials')
ylabel('weight w')
legend('true weight','repeated fits','Location','SouthEast')
legend('boxoff')
axis square
% -- repeated dw
axes('Position',[hmarg0+hsize+hmarg1 vmarg0 hsize vsize]);
dwRep = zeros(N-1,2);
nrList = [2 3];
for nr = nrList
wModeList = repCell{nr,1};
evdList = repCell{nr,2};
[~,kmax] = max(evdList);
dwRep(:,nrList==nr) = diff(wModeList(:,kmax));
end
lms = [min(dwRep(:)) max(dwRep(:))];
plot(dwRep(:,1),dwRep(:,2),'.','MarkerSize',7,'color',0.5*[1 1 1])
hold on
plot(lms,lms,'k-')
hold off
xlim(lms)
ylim(lms)
xlabel('{\Delta}w (rep 1) ')
ylabel('{\Delta}w (rep 2)')
axis square
%%% rat data
% -- w(t) estimate --
%axes('Position',[hmarg0+2*(hsize+hmarg1)+hmarg1/4 vmarg0 hsize*1.75 2*vsize+vmarg1]);
h1 = hmarg0+2*(hsize+hmarg1)+hmarg1/4;
hlim = hsize*1.7;
v1 = vmarg0;
vlim = 2*vsize+vmarg1;
vcut = 0.03;
vdiv = (vlim-2*vcut)/3;
wArray = ratFit.wArray;
N = size(wArray,1);
npanList = {1,[2 3],4};
npanLabels = {'bias b','sensitivity a','stickiness h'};
%wlabels = {'b','a1','a2','h'};
wlabels = {'bias b','sensitivity a1','sensitivity a2','history dependence h'};
for nrow = 1:3
axes('Position',[h1,v1+(3-nrow)*(vdiv+vcut),hlim,vdiv])
for np = npanList{nrow}
plot(1:N,wArray(:,np),'color',sevenColors(np,:),'LineWidth',2.5)
hold on
end
plot([0 N],[0 0],'k:')
hold off
if(nrow<3)
set(gca,'XTick',[]);
end
xlim([0 N])
legend(wlabels(npanList{nrow}),'Location','NorthWest')
legend('boxoff')
end
xlabel('trials')
% -- max evidence
axes('Position',[1-(hsize+hmarg1) vmarg0+vsize+vmarg1 hsize vsize]);
logEvdList = ratFit.evd;
plot(allsigbin,logEvdList-max(logEvdList),'ko-','LineWidth',2)
ylm0 = ylim;
hold on
plot(bestsigbin*[1 1],ylm0,'r--','LineWidth',2)
hold off
ylim(ylm0)
xlim([min(allsigbin) max(allsigbin)])
ytk0 = get(gca,'YTick');
set(gca,'YTick',ytk0(rem(ytk0,100)==0));
xtk0 = get(gca,'XTick');
set(gca,'XTick',xtk0(rem(xtk0,2)==0))
xlabel('log_{2} \sigma')
ylabel('log evd. (rel.)')
legend('log evd','max-evd','Location','SouthWest')
axis square
% -- BIC model selection
axes('Position',[1-(hsize+hmarg1) vmarg0 hsize vsize]);
BIClist = BIClist - max(BIClist(:));
plot(tauList,BIClist,'ko-','LineWidth',2)
myrange = [min(BIClist(:)) max(BIClist(:))];
ylim([myrange(1)-diff(myrange)/10 myrange(2)])
xlim([0 max(tauList)])
ytk0 = get(gca,'YTick');
set(gca,'YTick',ytk0(rem(ytk0,100)==0))
set(gca,'XTick',tauList)
xlabel('d (trials back)')
ylabel('BIC (rel.)')
axis square
set(findall(gcf,'-property','Fontsize'),'Fontsize',18)
set(gcf,'PaperPositionMode','auto') % match print size to screen
%%% final touch
axes('Position',[0 0 1 1])
axis off
hold on
panelfont = 24;
text(0.04,0.90,'A','FontWeight','Bold','FontSize',panelfont)
text(0.04,0.43,'B','FontWeight','Bold','FontSize',panelfont)
text(0.45,0.90,'C','FontWeight','Bold','FontSize',panelfont)
text(0.755,0.90,'D','FontWeight','Bold','FontSize',panelfont)
text(0.755,0.43,'E','FontWeight','Bold','FontSize',panelfont)
hold off
%% -------- with learning component --------
%% testing on simulated dataset, with true weights known
%%% check for existing file
sname = [datadir,'evdmax-test.mat'];
if(exist(sname,'file'))
% skip
disp('file already exists.');
else
%%% simulate a policy-gradient-updating rat
% set parameters
N = 2000;
truealpha = 2^-7;
truesigma = 2^-7;
% stimulus space
xgrid1D = (55:10:95);
xx = combvec(xgrid1D,xgrid1D)';
nx = size(xx,1);
xcenter = mean(xgrid1D); % typical scale of stimulus
xstd = std(xgrid1D);
xsetTrue = xx(or(diff(xx,[],2)==10,diff(xx,[],2)==-10),:);
xsetTrue = (unique(xsetTrue,'rows')-xcenter)/xstd;
nxsetTrue = size(xsetTrue,1);
%%% draw responses
iall = randsample(nxsetTrue,N,'true');
xall = xsetTrue(iall,:);
wInit = [0.4 -0.05 0.05];
hterms = 1;
if(hterms==1)
zall = [1; sign(diff(xall(1:end-1,:),[],2))];
xall = [xall zall];
wInit = [wInit 1];
end
%%% generate simulated rat
tback = 0;
decay = 1;
kappa = 1;
params = struct('alpha',truealpha,'sigma',truesigma,...
'tback',tback,'decay',decay,'kappa',kappa,'AT',false); % AT=false by default
dims = struct('y',1,'g',size(xall,2)+1);
[~,wSim,simdat,~] = getSimRat_active(params,dims,xall,wInit);
%%% fit learning parameters (from simulated learner)
K = size(wSim,2);
% set learning parameter space
alphabin = -9:0.5:-6;
eta = 1;
kappa = 1;
tback = 0;
showopt = 1;
maxIter = 25; % 5/16/2016 adition
% set prior width
sigInit = 3;
prsInit = zeros(K,1);
allsigbin = -7; %[-8 -9 -10];
allEvd = -Inf(numel(allsigbin),numel(alphabin));
for ns = 1:numel(allsigbin)
mysigbin = allsigbin(ns);
mysigma = 2^mysigbin;
wModeList = cell(size(alphabin,1),1);
disp(' ');
for nphi = 1:numel(alphabin)
alpha = 2^alphabin(nphi);
disp(['sigma 2^',num2str(mysigbin),' alpha 2^',num2str(alphabin(nphi))]);
fullfitOpts = struct('showopt',showopt,'maxIter',maxIter,...
'prsInit',prsInit,'sigInit',sigInit,...
'alpha',alpha,'eta',eta,'kappa',kappa,'tback',tback);
[wMode,Hess,logEvd,llstruct] = getMAP_RWprior(simdat,mysigma,fullfitOpts);
allEvd(ns,nphi) = logEvd; %llstruct.logli + llstruct.logprior - llstruct.logpost;
wModeList{nphi} = reshape(wMode,[N K]);
end
disp('done.');
end
[nsmax,nphimax] = find(allEvd==max(allEvd(:)));
display([allsigbin(nsmax) alphabin(nphimax)]);
%%% save data
save(sname,'wModeList','allEvd',...
'alphabin','allsigbin','truealpha','truesigma','sigInit','prsInit',...
'simdat','wSim');
end
%% on external dataset [also simulated for now]
%%% load dataset
tempVar = load([basedir,'testdat.mat']);
alldat = tempVar.alldat;
dims = tempVar.dims;
% truealpha = tempVar.alpha;
% truesigma = tempVar.sigma;
clear tempVar
setTag = '_sim';
K0 = (dims.y)*(dims.g);
% add history variable
hterm = 1; % single-step-back history
if(hterm==0)
newdat = struct('x',alldat.x,'y',alldat.y,'s',alldat.s,'allys',alldat.allys);
elseif(hterm==1)
% include z as input
newdat = struct('x',[alldat.x alldat.z],'y',alldat.y,'s',alldat.s,'allys',alldat.allys);
else
error('option hterm not recognized.');
end
% set dimensions
ydim = numel(newdat.allys)-1;
gdim = size(newdat.x,2)+1;
K = ydim*gdim;
N = numel(newdat.y);
if(hterm ~= (K-K0))
error('dimension mismatch: K');
end
%%% fit learning hyperparameters (from rat dataset)
% set learning hyperparameter space
alphabin = -7:-5; %-8:-4;
allsigbin = -7:-5; % -8:-4;
eta = 1;
kappa = 1;
tback = 0;
% set prior width
sigInit = 1;
prsInit = zeros(K,1);
showopt = 1;
maxIter = 25;
%%% check previous file
sname = [datadir,'evdmax',setTag,'_N',num2str(N),'.mat'];
if(exist(sname,'file'))
% skip
disp('file already exists.');
else
allEvd = -Inf(numel(allsigbin),numel(alphabin));
for ns = 1:numel(allsigbin)
mysigbin = allsigbin(ns);
mysigma = 2^mysigbin;
for nphi = 1:numel(alphabin)
alpha = 2^alphabin(nphi);
disp(' ');
disp(['sigma 2^',num2str(mysigbin),' alpha 2^',num2str(alphabin(nphi))]);
if(allEvd(ns,nphi)>-Inf)
disp('skipped');
continue;
end
fullfitOpts = struct('showopt',showopt,'maxIter',maxIter,...
'prsInit',prsInit,'sigInit',sigInit,...
'alpha',alpha,'eta',eta,'kappa',kappa,'tback',tback);
[wMode,~,logEvd,llstruct] = getMAP_RWprior(newdat,mysigma,fullfitOpts);
allEvd(ns,nphi) = logEvd;
wModeList{ns,nphi} = reshape(wMode,[N K]);
end
disp('done.');
end
[nsmax,nphimax] = find(allEvd==max(allEvd(:)));
display([allsigbin(nsmax) alphabin(nphimax)]);
%%% save data
save(sname,'wModeList','allEvd',...
'alphabin','allsigbin','sigInit','prsInit',...
'newdat','setTag','N');
end
%% plot together
figure(2)
clf;
set(gcf,'Position',[100 100 1000 350])
hmarg = 0.08;
vmarg = 0.2;
hsize = (1-4*hmarg)/3;
vsize = (1-2*vmarg);
%%% simulated model
sname = [datadir,'evdmax-test'];
sVar = load(sname);
allEvd = sVar.allEvd;
alphabin = sVar.alphabin;
truealpha = sVar.truealpha;
wModeList = sVar.wModeList;
wSim = sVar.wSim;
clear sVar
N = size(wSim,1);
[~,nphimax] = find(allEvd==max(allEvd(:)));
%subplot(1,3,1)
axes('Position',[hmarg vmarg hsize vsize])
% ---- plot true simulated model ---
ax0 = gca;
plot(1:N,wSim,'-','color',0.5*[1 1 1],'LineWidth',2)
hold on
%set(gca,'ColorOrderIndex',1)
plot([0 N],[0 0],'k:')
hold off
xlm0 = xlim;
ylm0 = ylim;
ytk0 = get(gca,'YTick');
set(gca,'YTick',ytk0(ytk0==floor(ytk0)))
xlabel('trials')
ylabel('model weights')
legend('true','Location','SouthWest')
legend('boxoff')
% ---- plot estimated model ---
axes('position',ax0.Position)
axis off
hold on
plot(1:N,wModeList{nphimax},'--','color',0*[1 1 1],'LineWidth',2)
hold off
xlim(xlm0);
ylim(ylm0);
%legend(strcat('estimated\_',wlabels),'Location','South')
legend('estimated','Location','SouthEast')
legend('boxoff')
%figure(6)
%subplot(1,3,2)
axes('Position',[2*hmarg+hsize vmarg hsize vsize])
plot(alphabin,allEvd'-max(allEvd(:)),'ko-','LineWidth',2)
ylm0 = ylim;
hold on
plot(log2(truealpha)*[1 1],ylm0,'r:','LineWidth',2)
plot(alphabin(nphimax)*[1 1],ylm0,'r--','LineWidth',2)
hold off
ytk0 = get(gca,'YTick');
set(gca,'YTick',ytk0(ytk0==floor(ytk0)))
xlabel('log_{2} \alpha')
ylabel('log evidence (rel.)')
legend('log evidence','true \alpha','max-evd','Location','SouthWest')
legend('boxoff')
%%% --- max evd for rat data ---
N = numel(alldat.y);
axes('Position',[3*hmarg+2*hsize vmarg hsize*1.1 vsize])
sname = [datadir,'evdmax',setTag,'_N',num2str(N),'.mat'];
sVar = load(sname);
allEvd = sVar.allEvd;
alphabin = sVar.alphabin;
allsigbin = sVar.allsigbin;
clear sVar
[nsmax,nphimax] = find(allEvd==max(allEvd(:)));
colormap gray
imagesc(alphabin,allsigbin,allEvd-max(allEvd(:)))
set(gca,'YDir','normal')
set(gca,'YTick',allsigbin)
set(gca,'XTick',alphabin)
hold on
plot(alphabin(nphimax),allsigbin(nsmax),'r*','MarkerSize',16)
hold off
xtk0 = get(gca,'XTick');
set(gca,'XTick',xtk0(xtk0==floor(xtk0)))
ytk0 = get(gca,'YTick');
set(gca,'YTick',ytk0(ytk0==floor(ytk0)))
ylabel('log_{2} \sigma')
xlabel('log_{2} \alpha')
%axis square
c0 = colorbar; % EastOutside;
c0.Label.String = 'log evidence (rel.)';
c0.Location = 'EastOutside';
set(findall(gcf,'-property','fontsize'),'fontsize',18)
set(gcf,'paperpositionmode','auto')
%%% final touch
axes('Position',[0 0 1 1])
axis off
hold on
text(0.03,0.8,'A','FontWeight','Bold','FontSize',22)
text(0.34,0.8,'B','FontWeight','Bold','FontSize',22)
text(0.65,0.8,'C','FontWeight','Bold','FontSize',22)
hold off