-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·176 lines (150 loc) · 6.93 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.losses import binary_crossentropy
from keras.utils import multi_gpu_model
from utils import *
from keras import losses
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.utils import plot_model
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
import segmentation_models as sm
from segmodel import *
loss_dict = {
"bceja": sm.losses.bce_jaccard_loss,
"ja": sm.losses.jaccard_loss,
"focal": sm.losses.binary_focal_loss,
"bce":sm.losses.binary_crossentropy,
"focalja": sm.losses.binary_focal_jaccard_loss,
"focaldice":sm.losses.binary_focal_dice_loss,
"dice": sm.losses.dice_loss,
"bcedice": sm.losses.bce_dice_loss,
"l1": losses.mean_absolute_percentage_error,
"l2": losses.mean_squared_error
}
def unet(pretrained_weights=None, input_size=(256, 256, 3), lr=1E-3, multi_gpu=False, loss="l1"):
# 所有等号左侧其实不是层而是张量吗...
# 是的! 因为这里使用了keras的函数式API。每一个层都是可以调用的...而在左边返回输出的张量
def resblock(layer_input, filters, f_size=3):
r = Conv2D(filters, kernel_size=f_size, strides=1, padding='same')(layer_input)
r = LeakyReLU(alpha=0.2)(r)
r = BatchNormalization()(r)
r = Conv2D(filters, kernel_size=f_size, strides=1, padding='same')(r)
r = LeakyReLU(alpha=0.2)(r)
r = Add()([r, layer_input])
return BatchNormalization()(r)
def resblockn(n, layer_input, filters, f_size=3):
x = layer_input
for k in range(n):
x = resblock(x, filters, f_size)
return x
inputs = Input(input_size)
conv1 = Conv2D(64, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv1)
conv1 = BatchNormalization()(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv2)
conv2 = BatchNormalization()(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv3)
conv3 = BatchNormalization()(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv4)
conv4 = BatchNormalization()(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv5)
conv5 = BatchNormalization()(conv5)
drop5 = Dropout(0.5)(conv5)
#res5 = resblockn(9, drop5, 1024)
up6 = Conv2D(512, 2, activation='relu', padding='same',
kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge6)
conv6 = Conv2D(512, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv6)
conv6 = BatchNormalization()(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same',
kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(256, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv7)
conv7 = BatchNormalization()(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same',
kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(128, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv8)
conv8 = BatchNormalization()(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same',
kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(64, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(2, 3, activation='relu', padding='same',
kernel_initializer='he_normal')(conv9)
conv9 = BatchNormalization()(conv9)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
if multi_gpu:
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = multi_gpu_model(model, gpus=2)
model.compile(optimizer=Adam(lr=lr),
loss=sm.losses.binary_focal_jaccard_loss, metrics=[sm.metrics.iou_score, 'accuracy'])
else:
model.compile(optimizer=Adam(lr=lr),
loss=loss_dict[loss], metrics=[sm.metrics.iou_score, 'accuracy'])
# model.summary()
if pretrained_weights:
model.load_weights(pretrained_weights)
return model
def smunet(loss="focal", pretrained_weights=None):
model = sm.Unet(backbone_name = 'densenet121',
input_shape=(None, None, 3),
classes=1,
activation='sigmoid',
weights=None,
encoder_weights='imagenet',
encoder_freeze=False,
encoder_features='default',
decoder_block_type='upsampling',
decoder_filters=(256, 128, 64, 32, 16),
decoder_use_batchnorm=True)
model.compile(optimizer='adam',
loss=loss_dict[loss], metrics=[sm.metrics.iou_score, 'accuracy'])
if pretrained_weights:
model.load_weights(pretrained_weights)
return model
model_dict = {
"unet": unet,
"unetxx": unetxx,
"unet++": unetxx,
"denseunet": denseunet
}