-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
67 lines (48 loc) · 1.75 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import fastapi
import pydantic
import modelib as ml
def create_model():
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X, y = load_iris(return_X_y=True, as_frame=True)
X_train, _, y_train, _ = train_test_split(X, y, test_size=0.2, random_state=42)
model = Pipeline(
[
("scaler", StandardScaler()),
("clf", RandomForestClassifier(random_state=42)),
]
).set_output(transform="pandas")
model.fit(X_train, y_train)
return model
features_metadata = [
{"name": "sepal length (cm)", "dtype": "float64"},
{"name": "sepal width (cm)", "dtype": "float64"},
{"name": "petal length (cm)", "dtype": "float64"},
{"name": "petal width (cm)", "dtype": "float64"},
]
class InputData(pydantic.BaseModel):
sepal_length: float = pydantic.Field(alias="sepal length (cm)")
sepal_width: float = pydantic.Field(alias="sepal width (cm)")
petal_length: float = pydantic.Field(alias="petal length (cm)")
petal_width: float = pydantic.Field(alias="petal width (cm)")
MODEL = create_model()
simple_runner = ml.SklearnRunner(
name="my simple model",
predictor=MODEL,
method_names="predict",
request_model=InputData, # OR request_model=features_metadata
)
pipeline_runner = ml.SklearnPipelineRunner(
name="Pipeline Model",
predictor=MODEL,
method_names=["transform", "predict"],
request_model=InputData,
)
app = fastapi.FastAPI()
app = ml.init_app(app=app, runners=[simple_runner, pipeline_runner])
if __name__ == "__main__":
import uvicorn
uvicorn.run(app)