forked from SEL-Columbia/infrastructure-planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforecast_demographic_using_recent_records.py
103 lines (95 loc) · 4.1 KB
/
forecast_demographic_using_recent_records.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from argparse import ArgumentParser
from infrastructure_planning.demography.linear import (
forecast_demographic_using_recent_records)
from infrastructure_planning.exceptions import InvalidData
from invisibleroads_macros.disk import make_enumerated_folder_for, make_folder
from invisibleroads_macros.log import format_summary
from os.path import join
from pandas import read_csv
def run(
target_folder,
target_year,
demographic_by_year_table,
demographic_by_year_table_name_column,
demographic_by_year_table_year_column,
demographic_by_year_table_population_column,
default_yearly_population_growth_percent):
d = []
try:
demographic_by_year_table = forecast_demographic_using_recent_records(
target_year,
demographic_by_year_table,
demographic_by_year_table_name_column,
demographic_by_year_table_year_column,
demographic_by_year_table_population_column,
default_yearly_population_growth_percent)
except InvalidData as e:
exit('demographic_by_year_table.error = %s' % e)
demographic_by_year_table_path = join(
target_folder, 'demographic-by-year.csv')
demographic_by_year_table.to_csv(
demographic_by_year_table_path, index=False)
d.append((
'demographic_by_year_table_path',
demographic_by_year_table_path))
columns = demographic_by_year_table.columns
if 'Latitude' in columns and 'Longitude' in columns:
demographic_by_year_geotable_path = join(
target_folder, 'demographic-by-year.msg')
demographic_by_year_geotable = demographic_by_year_table.fillna(
method='ffill').groupby(
demographic_by_year_table_name_column).last()
# Set radius
demographic_by_year_geotable['RadiusInPixelsRange10-50FromSum'] = \
demographic_by_year_geotable[
demographic_by_year_table_population_column]
# Set fill color
forecast_populations = demographic_by_year_table.groupby(
demographic_by_year_table_name_column).last()[
demographic_by_year_table_population_column]
original_populations = demographic_by_year_table.groupby(
demographic_by_year_table_name_column).first()[
demographic_by_year_table_population_column]
demographic_by_year_geotable['FillColor'] = (
forecast_populations - original_populations).apply(
lambda x: 'r' if x > 0 else 'b')
# Save table
demographic_by_year_geotable.to_msgpack(
demographic_by_year_geotable_path, compress='blosc')
d.insert(0, (
'demographic_by_year_geotable_path',
demographic_by_year_geotable_path))
return d
if __name__ == '__main__':
argument_parser = ArgumentParser()
argument_parser.add_argument(
'--target_folder',
metavar='FOLDER', type=make_folder)
argument_parser.add_argument(
'--target_year',
metavar='YEAR', type=int, required=True)
argument_parser.add_argument(
'--demographic_by_year_table_path',
metavar='PATH', required=True)
argument_parser.add_argument(
'--demographic_by_year_table_name_column',
metavar='COLUMN', required=True)
argument_parser.add_argument(
'--demographic_by_year_table_year_column',
metavar='COLUMN', required=True)
argument_parser.add_argument(
'--demographic_by_year_table_population_column',
metavar='COLUMN', required=True)
argument_parser.add_argument(
'--default_yearly_population_growth_percent',
metavar='PERCENT', type=float, required=True)
args = argument_parser.parse_args()
d = run(
args.target_folder or make_enumerated_folder_for(__file__),
args.target_year,
read_csv(args.demographic_by_year_table_path),
args.demographic_by_year_table_name_column,
args.demographic_by_year_table_year_column,
args.demographic_by_year_table_population_column,
args.default_yearly_population_growth_percent)
print(format_summary(d))