-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_loss.py
165 lines (129 loc) · 5.73 KB
/
train_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset,DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import time
import math
import argparse
import os
import random
from lib.model import DRNSegment,PSMNet
from utils.dataloader import StereoSeqDataset,StereoSupervDataset
from loss import *
from eval_utils import end_point_error
import sys
import imageio
import matplotlib.pyplot as plt
from PIL import Image
sys.path.append('drnseg')
sys.path.append('lib')
# cuda
use_cuda = torch.cuda.is_available()
# default sample height & width, and coordinate matrix
sh,sw = 256,512
ch = torch.Tensor(range(sh)).unsqueeze(1).repeat(1,sw)
cw = torch.Tensor(range(sw)).unsqueeze(0).repeat(sh,1)
coord_matrix = torch.cat((cw.unsqueeze(-1),ch.unsqueeze(-1)),dim=-1)
mult = torch.ones((sh,sw,2))
mult[:,:,0] /= (sw-1)/2
mult[:,:,1] /= (sh-1)/2
if use_cuda:
coord_matrix,mult = coord_matrix.cuda(),mult.cuda()
def get_grid(disp):
c = coord_matrix.view(1,sh,sw,2).repeat(disp.size(0),1,1,1)
c += torch.cat((disp.unsqueeze(-1),torch.zeros(disp.size(0),sh,sw,1).cuda()),dim=-1)
c = c*mult-1
return c
model = PSMNet(192)
model = nn.DataParallel(model).cuda()
optimizer = optim.Adam(model.parameters(), lr=0.001)
import utils.psmprocess as psmprocess
preprocess = psmprocess.get_transform(augment=False)
ch,cw = 256,512
def get_image(f,x1,y1):
img = Image.open(f).convert('RGB')
img = preprocess(img.crop((x1,y1,x1+cw,y1+ch)))
return img
def get_disp(f,x1,y1):
disp = np.array(imageio.imread(f),dtype=np.float32)/256.0
disp = disp[y1:y1+ch,x1:x1+cw]
disp = torch.FloatTensor(disp)
return disp
# data
x1 = random.randint(0, 1230 - cw)
y1 = random.randint(0, 360 - ch)
x1,y1 = 300,20
imgL_0 = get_image('some_kitti/0_2.png',x1,y1)
imgR_0 = get_image('some_kitti/0_3.png',x1,y1)
disp_0 = get_disp('some_kitti/0_depth.png',x1,y1)
x1 = random.randint(0, 1230 - cw)
y1 = random.randint(0, 360 - ch)
imgL_1 = get_image('some_kitti/3_2.png',x1,y1)
imgR_1 = get_image('some_kitti/3_3.png',x1,y1)
disp_1 = get_disp('some_kitti/3_depth.png',x1,y1)
x1 = random.randint(0, 1230 - cw)
y1 = random.randint(0, 360 - ch)
imgL_2 = get_image('some_kitti/7_2.png',x1,y1)
imgR_2 = get_image('some_kitti/7_3.png',x1,y1)
disp_2 = get_disp('some_kitti/7_depth.png',x1,y1)
x1 = random.randint(0, 1230 - cw)
y1 = random.randint(0, 360 - ch)
imgL_3 = get_image('some_kitti/9_2.png',x1,y1)
imgR_3 = get_image('some_kitti/9_3.png',x1,y1)
disp_3 = get_disp('some_kitti/9_depth.png',x1,y1)
x1 = random.randint(0, 1230 - cw)
y1 = random.randint(0, 360 - ch)
imgL_4 = get_image('some_kitti/10_2.png',x1,y1)
imgR_4 = get_image('some_kitti/10_3.png',x1,y1)
disp_4 = get_disp('some_kitti/10_depth.png',x1,y1)
imageio.imsave("train_loss_outputs/imgL.png",imgL_0.permute(1,2,0).numpy())
imageio.imsave("train_loss_outputs/imgR.png",imgR_0.permute(1,2,0).numpy())
edgeloss = EdgeAwareLoss().cuda()
# train with 1 image
for i in range(1000):
optimizer.zero_grad()
xL = imgL_0.unsqueeze(0).cuda()
xR = imgR_0.unsqueeze(0).cuda()
y = disp_0.unsqueeze(0).cuda()
y = y.squeeze(1)
mask = (y < 192)*(y > 0.0)
mask.detach_()
output1, output2, output3 = model(xL,xR) # L-R input
output1 = torch.squeeze(output1,1)
output2 = torch.squeeze(output2,1)
output3 = torch.squeeze(output3,1)
s_loss = 0.5*F.smooth_l1_loss(output1[mask], y[mask], size_average=True) + 0.7*F.smooth_l1_loss(output2[mask], y[mask], size_average=True) + F.smooth_l1_loss(output3[mask], y[mask], size_average=True)
#s_loss.backward()
coord1 = get_grid(output1)
coord2 = get_grid(output2)
coord3 = get_grid(output3)
xL,xR = torch.mean(xL,dim=1).unsqueeze(1),torch.mean(xR,dim=1).unsqueeze(1)
warp1 = F.grid_sample(xL,coord1,mode="bilinear",padding_mode="border")
warp2 = F.grid_sample(xL,coord2,mode="bilinear",padding_mode="border")
warp3 = F.grid_sample(xL,coord3,mode="bilinear",padding_mode="border")
output1,output2,output3 = output1.unsqueeze(1),output2.unsqueeze(1),output3.unsqueeze(1)
loss1_mask = F.grid_sample(torch.ones(xR.shape).cuda(),coord1,padding_mode="zeros")>0.0
loss2_mask = F.grid_sample(torch.ones(xR.shape).cuda(),coord2,padding_mode="zeros")>0.0
loss3_mask = F.grid_sample(torch.ones(xR.shape).cuda(),coord3,padding_mode="zeros")>0.0
#u_loss = (0.5*l1_loss(xR,warp1,loss1_mask)+0.7*l1_loss(xR,warp2,loss2_mask)+l1_loss(xR,warp3,loss3_mask))
#u_loss.backward()
#output3 = output3.squeeze(1)
u_loss = 0.5*(l1_loss(xR,warp1,loss1_mask)+0.5*edgeloss(xL,output1,loss1_mask)+0.5*ssim_loss(xR,warp1,loss1_mask))
u_loss += 0.7*(l1_loss(xR,warp2,loss2_mask)+0.5*edgeloss(xL,output2,loss2_mask)+0.5*ssim_loss(xR,warp2,loss2_mask))
u_loss += l1_loss(xR,warp3,loss3_mask)+0.5*edgeloss(xL,output3,loss3_mask)+0.5*ssim_loss(xR,warp3,loss3_mask)
diff_loss = 0.5*(torch.mean((output1[:,:,1:]-output1[:,:,:-1]).pow(2))+torch.mean((output1[:,:,:,1:]-output1[:,:,:,:-1]).pow(2)))
diff_loss += 0.7*(torch.mean((output2[:,:,1:]-output2[:,:,:-1]).pow(2))+torch.mean((output2[:,:,:,1:]-output2[:,:,:,:-1]).pow(2)))
diff_loss += torch.mean((output3[:,:,1:]-output3[:,:,:-1]).pow(2))+torch.mean((output3[:,:,:,1:]-output3[:,:,:,:-1]).pow(2))
u_loss += 0.01*diff_loss
u_loss.backward()
output3 = output3.squeeze(1)
optimizer.step()
if i % 50 == 0 and i > 1:
print(s_loss)
imageio.imsave("train_loss_outputs/depth_"+str(i)+".png",output3[0].detach().cpu().numpy())
coord = get_grid(output3)
warp = F.grid_sample(xL,coord,mode="bilinear",padding_mode="border")
imageio.imsave("train_loss_outputs/warped_"+str(i)+".png",warp[0].permute(1,2,0).detach().cpu().numpy())