-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
149 lines (121 loc) · 5.11 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.utils.data as data
import torchvision.transforms as tt
from torchvision.datasets import CelebA, CIFAR10
from tqdm import tqdm
from realnvp import RealNVP
def train(args):
# Use cuda.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Set the random seeds.
if args.seed is not None:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
if args.dataset == "CelebA":
# Create a dataloader for the CelebA dataset.
transform = tt.Compose([
tt.CenterCrop(size=148),
tt.Resize(size=32),
tt.PILToTensor(),
])
celebs_train = CelebA("datasets", split="train", download=True, transform=transform)
celebs_test = CelebA("datasets", split="test", download=True, transform=transform)
train_loader = data.DataLoader(celebs_train, batch_size=args.batch_size, shuffle=True)
test_loader = data.DataLoader(celebs_test, batch_size=args.batch_size)
elif args.dataset == "CIFAR10":
# transform = tt.Compose([
# tt.RandomHorizontalFlip(),
# tt.PILToTensor(),
# ])
# Create a dataloader for the CIFAR-10 dataset.
cifar10_train = CIFAR10("datasets", train=True, download=True, transform=tt.PILToTensor())
cifar10_test = CIFAR10("datasets", train=False, download=True, transform=tt.PILToTensor())
train_loader = data.DataLoader(cifar10_train, batch_size=args.batch_size, shuffle=True)
test_loader = data.DataLoader(cifar10_test, batch_size=args.batch_size)
else:
raise NotImplementedError
# Initialize the model.
C, H, W = (3, 32, 32)
n_colors = 256
model = RealNVP(in_shape=(C, H, W), n_colors=n_colors)
model.to(device)
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# Run the training loop.
train_losses, test_losses = [], []
total_norms = []
test_losses.append(eval(model, test_loader))
for i in tqdm(range(args.epochs)):
avg_loss, j = 0., 0
# Iterate over the training set.
for x, _ in train_loader:
# Forward pass.
log_prob = model.log_prob(x)
loss = -torch.mean(log_prob) / (C * H * W) # divide by the number of dims to get nits-per-dim
# Backward pass.
optimizer.zero_grad()
loss.backward()
total_norm = torch.norm(torch.stack([torch.norm(p.grad) for p in model.parameters()]))
if args.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
# Maybe clip gradients of each flow network separately?
# for flow in model.flow.flows:
# torch.nn.utils.clip_grad_norm_(flow.parameters(), args.clip_grad)
optimizer.step()
total_norms.append(total_norm.item())
train_losses.append(loss.item())
avg_loss += loss.item()
j += 1
avg_loss /= j
# Test on the test set.
test_losses.append(eval(model, test_loader))
# Maybe printout results.
if args.verbose:
tqdm.write(f"Epoch ({i+1}/{args.epochs}): "+
f"train loss {avg_loss:.5f} / test loss {test_losses[-1]:.5f}")
torch.save(model.cpu(), f"realnvp_{args.dataset}.pt")
return train_losses, test_losses, total_norms
def eval(model, data_loader):
is_training = model.training
model.eval()
C, H, W = model.in_shape
with torch.no_grad():
total_loss, j = 0., 0
for x, _ in data_loader:
log_prob = model.log_prob(x)
loss = -torch.mean(log_prob) / (C * H * W)
total_loss += loss.item() * x.shape[0]
j += x.shape[0]
if is_training: model.train()
return total_loss / j
def plot(figname, train_losses, test_losses):
# Plot the loss during training.
n_epochs = len(test_losses) - 1
xs_train = np.linspace(0, n_epochs, len(train_losses))
xs_test = np.arange(n_epochs+1)
fig, ax = plt.subplots()
ax.set_title("Loss value during training")
ax.set_xlabel("Iteration")
ax.set_ylabel("Loss")
ax.plot(xs_train, train_losses, lw=0.6, label="train loss")
ax.plot(xs_test, test_losses, lw=3., label="test loss")
ax.legend(loc="upper right")
fig.savefig(figname)
plt.close(fig)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=None, type=int)
parser.add_argument("--lr", default=3e-4, type=float)
parser.add_argument("--epochs", default=50, type=int)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--clip_grad", default=None, type=float)
parser.add_argument("--verbose", action="store_true", default=False)
parser.add_argument("--dataset", default="CIFAR10", type=str)
args = parser.parse_args()
train_losses, test_losses, total_norms = train(args)
plot(f"loss_{args.dataset}.png", train_losses, test_losses)
#