-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtest_model.py
77 lines (60 loc) · 2.54 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python
# Do *not* edit this script.
import numpy as np, os, sys
from team_code import load_model, run_model
from helper_code import *
# Test model.
def test_model(model_directory, data_directory, output_directory):
# Find header and recording files.
print('Finding header and recording files...')
header_files, recording_files = find_challenge_files(data_directory)
num_recordings = len(recording_files)
if not num_recordings:
raise Exception('No data was provided.')
# Create a folder for the outputs if it does not already exist.
if not os.path.isdir(output_directory):
os.mkdir(output_directory)
# Identify the required lead sets.
required_lead_sets = set()
for i in range(num_recordings):
header = load_header(header_files[i])
leads = get_leads(header)
sorted_leads = sort_leads(leads)
required_lead_sets.add(sorted_leads)
# Load models.
leads_to_model = dict()
print('Loading models...')
for leads in required_lead_sets:
model = load_model(model_directory, leads) ### Implement this function!
leads_to_model[leads] = model
# Run model for each recording.
print('Running model...')
for i in range(num_recordings):
print(' {}/{}...'.format(i+1, num_recordings))
# Load header and recording.
header = load_header(header_files[i])
recording = load_recording(recording_files[i])
leads = get_leads(header)
sorted_leads = sort_leads(leads)
# Apply model to recording.
model = leads_to_model[sorted_leads]
try:
classes, labels, probabilities = run_model(model, header, recording) ### Implement this function!
except:
print('... failed.')
classes, labels, probabilities = list(), list(), list()
# Save model outputs.
recording_id = get_recording_id(header)
head, tail = os.path.split(header_files[i])
root, extension = os.path.splitext(tail)
output_file = os.path.join(output_directory, root + '.csv')
save_outputs(output_file, recording_id, classes, labels, probabilities)
print('Done.')
if __name__ == '__main__':
# Parse arguments.
if len(sys.argv) != 4:
raise Exception('Include the model, data, and output folders as arguments, e.g., python test_model.py model data outputs.')
model_directory = sys.argv[1]
data_directory = sys.argv[2]
output_directory = sys.argv[3]
test_model(model_directory, data_directory, output_directory)