-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathlearning_rate_policy.m
37 lines (35 loc) · 1.25 KB
/
learning_rate_policy.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function lr_all = learning_rate_policy(init_lr, step, drop, min_lr, num_epochs)
% -------------------------------------------------------------------------
% Description:
% function to generate a set of learning rates for each epoch
%
% Input:
% - init_lr : initial learning rate
% - step : number of epochs to drop learning rate
% - drop : learning rate drop ratio
% - min_lr : minimum learning rate
% - num_epochs: total number of epochs
%
% Output:
% - lr_all : learning rate for epochs
%
% Citation:
% Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
% Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang
% IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
%
% Contact:
% Wei-Sheng Lai
% University of California, Merced
% -------------------------------------------------------------------------
if( drop == 0 )
lr_all = repmat(init_lr, 1, num_epochs);
else
num_drop = round(num_epochs / step) - 1;
lr_all = init_lr * drop.^(0:num_drop);
lr_all = repmat(lr_all, step, 1);
lr_all = lr_all(:);
end
lr_all = max(lr_all, min_lr);
end