-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathSR_patch_MSLapSRN.m
103 lines (83 loc) · 3.05 KB
/
SR_patch_MSLapSRN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
function [img_HR, time] = SR_patch_MSLapSRN(img_LR, net, model_scale, test_scale, gpu)
% -------------------------------------------------------------------------
% Description:
% function to apply patch-based SR with MS-LapSRN
% We split input image into 4 overlapped sub-regions and apply SR
%
% Input:
% - img_LR : low-resolution image
% - net : MS-LapSRN model
% - model_scale : model upsampling scale for constructing pyramid
% - test_scale : image upsampling scale
% - gpu : GPU ID
%
% Output:
% - img_HR: high-resolution image
%
% Citation:
% Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks
% Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang
%
% Contact:
% Wei-Sheng Lai
% University of California, Merced
% -------------------------------------------------------------------------
%% setup
net.mode = 'test';
output_var = sprintf('x%dSR_%dx_output', model_scale, model_scale);
output_index = net.getVarIndex(output_var);
net.vars(output_index).precious = 1;
% RGB to YUV
if( size(img_LR, 3) > 1 )
img_LR = rgb2ycbcr(img_LR);
end
% extract Y
y_LR = single(img_LR(:, :, 1));
if( gpu )
y_LR = gpuArray(y_LR);
end
H = size(y_LR, 1);
W = size(y_LR, 2);
pw = ceil(W / 2);
ph = ceil(H / 2);
rf = 40;
patch_ul = y_LR( 1 : ph + rf, 1 : pw + rf);
patch_ur = y_LR( 1 : ph + rf, pw - rf + 1 : end);
patch_dl = y_LR(ph - rf + 1 : end, 1 : pw + rf);
patch_dr = y_LR(ph - rf + 1 : end, pw - rf + 1 : end);
tic;
% forward ul
inputs = {sprintf('x%dSR_LR', model_scale), patch_ul};
net.eval(inputs);
patch_ul = gather(net.vars(output_index).value);
patch_ul = patch_ul(1 : ph * model_scale, 1 : pw * model_scale);
% forward ur
inputs = {sprintf('x%dSR_LR', model_scale), patch_ur};
net.eval(inputs);
patch_ur = gather(net.vars(output_index).value);
patch_ur = patch_ur(1 : ph * model_scale, rf * model_scale + 1 : end);
% forward dl
inputs = {sprintf('x%dSR_LR', model_scale), patch_dl};
net.eval(inputs);
patch_dl = gather(net.vars(output_index).value);
patch_dl = patch_dl(rf * model_scale + 1 : end, 1 : pw * model_scale);
% forward dr
inputs = {sprintf('x%dSR_LR', model_scale), patch_dr};
net.eval(inputs);
patch_dr = gather(net.vars(output_index).value);
patch_dr = patch_dr(rf * model_scale + 1 : end, rf * model_scale + 1 : end);
% reconstruct output
y_HR = cat(1, cat(2, patch_ul, patch_ur), cat(2, patch_dl, patch_dr));
time = toc;
% bicubic upsample UV
img_HR = imresize(img_LR, test_scale);
if( size(y_HR, 1) ~= size(img_HR, 1) )
y_HR = imresize(y_HR, [size(img_HR, 1), size(img_HR, 2)]);
end
img_HR(:, :, 1) = double(y_HR);
% YUV to RGB
if( size(img_HR, 3) > 1 )
img_HR = ycbcr2rgb(img_HR);
end
end