-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsvg.f90
65 lines (56 loc) · 3.86 KB
/
rsvg.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
!###################################################################################################################################
! State vector generators - RSVG
!###################################################################################################################################
subroutine rsv_std(optg, d, rsv) ! Generates a random state vector (pure quantum state) using the standard method
! Ref: Maziero, J. (2015). Generating pseudo-random discrete probability distributions. Braz. J. Phys. 45, 377.
implicit none
integer :: d ! (input) Dimension of the random state vector
complex(8) :: rsv(1:d) ! Random state vector
real(8), allocatable :: rpv(:) ! Random probability vector
real(8), allocatable :: rn(:) ! Vector of random numbers
integer :: j ! Auxiliary variable for counters
real(8), parameter :: pi = 4.d0*atan(1.d0)
character(10), dimension(5) :: optg ! Options for the generators
allocate( rpv(1:d), rn(1:d) ) ; call rpvg(optg, d, rpv) ; call rng(optg, d, rn) ! Allocate memory for and get rpv and rn
forall( j = 1 : d ) rsv(j) = sqrt(rpv(j))*exp( (0.d0,1.d0)*(rn(j)*2.d0*pi) ) ! The random phases theta_j = rn*2*pi are in [0,2*pi]
deallocate( rpv, rn )
end
!------------------------------------------------------------------------------------------------------------------------------------
subroutine rsv_gauss(optg, d, rsv) ! Generates a random state vector (pure quantum state) using the standard method with gaussianily distributed complex coefficients
! Ref: Maziero, J. (2015). Random sampling of quantum states: A survey of methods. Braz. J. Phys. 45, 575.
implicit none
integer :: d ! (input) Dimension of the random state vector
complex(8) :: rsv(1:d) ! (output) Random state vector
real(8), allocatable :: grn(:) ! Random vector of gaussianily distributed random numbers
real(8) :: norm ! Auxiliary variable for normalization
integer :: j ! Auxiliary variable for counters
character(10), dimension(5) :: optg ! Options for the generators
allocate( grn(1:2*d) ) ; call rng_gauss(optg, 2*d, grn) ; forall ( j = 1:d ) rsv(j) = grn(j) + (0.d0,1.d0)*grn(j+d)
rsv = rsv/norm(d, rsv) ! Normalize the vector
deallocate( grn )
end
!------------------------------------------------------------------------------------------------------------------------------------
subroutine rsv_ru(optg, d, rsv) ! Generates a random quantum state vector using the first column of a random unitary matrix
! Ref: Zyczkowski, K. (1999). Volume of the set of separable states. II, Phys. Rev. A 60, 3496.
implicit none
integer :: d ! (input) Dimension of the random state vector
complex(8) :: rsv(1:d) ! (output) Random state vector
complex(8), allocatable :: ru(:,:) ! Random unitary matrix
integer :: j ! Auxiliary variable for counters
character(10), dimension(5) :: optg ! Options for the generators
allocate( ru(1:d,1:d) ) ; call rug(optg, d, ru) ; rsv(:) = ru(:,1) ; deallocate( ru )
end
!###################################################################################################################################
! Calling subroutines - RSVS
!###################################################################################################################################
subroutine rsvg(optg, d, rsv) ! Calls the choosed random state vector generator
implicit none
integer :: d ! Dimension of the vector
complex(8) :: rsv(1:d) ! The random state vector
character(10), dimension(5) :: optg ! Options for the generators
if ( optg(4) == "std" ) then ; call rsv_std(optg, d, rsv)
else if ( optg(4) == "gauss" ) then ; call rsv_gauss(optg, d, rsv)
else if ( optg(4) == "ru" ) then ; call rsv_ru(optg, d, rsv)
endif
end
!###################################################################################################################################