-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrdmg.f90
140 lines (120 loc) · 7.53 KB
/
rdmg.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
!###################################################################################################################################
! Random density matrix generators - RDMG
!###################################################################################################################################
subroutine rdm_std(optg, d, rdm) ! Generates a random density matrix using the standard method: rdm = \sum_j p_j U|c_j><c_j|U^†
! Ref: Maziero, J. (2015). Random sampling of quantum states: A survey of methods. Braz. J. Phys. 45, 575.
implicit none
integer :: d ! Dimension of the random density matrix
complex(8) :: rdm(1:d,1:d) ! Random density matrix
complex(8), allocatable :: ru(:,:) ! Random unitary matrix
real(8), allocatable :: rpv(:) ! Random probability vector
integer :: j, k, l ! Auxiliary variable for counters
character(10), dimension(5) :: optg ! Options for the generators
allocate ( ru(1:d,1:d), rpv(1:d) ) ; call rpvg(optg, d, rpv)
call rug(optg, d, ru) ! Allocate memory for and get these random variables
rdm = (0.d0,0.d0) ! Generates the rdm
do j = 1, d ; do k = 1, d ; do l = 1, d ; rdm(j,k) = rdm(j,k) + rpv(l)*ru(j,l)*conjg(ru(k,l)) ; enddo ; enddo ; enddo
deallocate ( ru, rpv )
end
!------------------------------------------------------------------------------------------------------------------------------------
subroutine rdm_ginibre(optg, d, rdm) ! Generates a random density matrix normalizing G*G^†, with G being a Ginibre matrix
! Ref: \.{Z}yczkowski, K., and Sommers, H.-J. (2001). Induced measures in the space of mixed quantum states.
! J. Phys. A: Math. Gen. 34, 7111.
implicit none
integer :: d ! Dimension of the random density matrix
complex(8) :: rdm(1:d,1:d) ! Random density matrix
complex(8), allocatable :: G(:,:), GGd(:,:) ! For the Ginibre matrix and its product with its adjoint
real(8) :: norm_hs ! For the Hilbert-Schmidt norm function
character(10), dimension(5) :: optg ! Options for the generators
allocate ( G(1:d,1:d), GGd(1:d,1:d) ) ; call ginibre(optg, d, d, G) ; call matmul_AAd(d, d, G, GGd)
rdm = GGd/((norm_hs(d, d, G))**2.d0) ! Defines the density matrix
deallocate ( G, GGd )
end
!------------------------------------------------------------------------------------------------------------------------------------
subroutine rdm_bures(optg, d, rdm) ! Generates a random density matrix normalizing (id+U)G*G^†(id+U^†), with G being a Ginibre matrix and U a random unitary
! Ref: Al Osipov, V., Sommers, H.-J., and \.{Z}yczkowski, K. (2010). Random Bures mixed states and the distribution of their purity.
! J. Phys. A: Math. Theor. 43, 055302.
implicit none
integer :: d ! Dimension of the matrices
complex(8) :: rdm(1:d,1:d) ! Random density matrix
complex(8), allocatable :: G(:,:) ! For the Ginibre matrix
complex(8), allocatable :: U(:,:) ! For the random unitary matrix
!complex(8), allocatable :: id(:,:) ! For the indentity matrix
complex(8), allocatable :: A(:,:), AAd(:,:) ! Auxiliary matrices
real(8) :: norm_hs ! For the Hilbert-Schmidt norm function
integer :: j ! Auxiliary variable for counters
character(10), dimension(5) :: optg ! Options for the generators
allocate ( G(1:d,1:d), U(1:d,1:d), A(1:d,1:d), AAd(1:d,1:d) )
call ginibre(optg, d, d, G) ; call rug(optg, d, U) ; forall ( j = 1:d ) U(j,j) = U(j,j) + 1.d0 ! U -> id+U
A = matmul(U,G) ; call matmul_AAd(d, d, A, AAd)
rdm = AAd/((norm_hs(d, d, A))**2.d0) ! Defines the density matrix
deallocate ( G, U, A, AAd )
end
!------------------------------------------------------------------------------------------------------------------------------------
subroutine rdm_ptrace(optg, d, rdm) ! Generates a random density matrix via partial tracing over a random state vector
! Ref: Mej\'ia, J., Zapata, C., and Botero, A. (2015). The difference between two random mixed quantum states: Exact and asymptotic
! spectral analysis. arXiv:1511.07278.
implicit none
integer :: d ! Dimension of the density matrix
complex(8) :: rdm(1:d,1:d) ! Random density matrix
complex(8), allocatable :: rsv(:) ! For the random state vector
complex(8), allocatable :: proj(:,:) ! For the projector
character(10), dimension(5) :: optg ! Options for the generators
allocate ( rsv(1:d*d), proj(1:d*d,1:d*d) )
call rsvg(optg, d*d, rsv) ; call projector(rsv, d*d, proj)
call partial_trace_a_he(proj, d, d, rdm)
deallocate ( rsv, proj )
end
!------------------------------------------------------------------------------------------------------------------------------------
subroutine rdm_bds(rbds) ! Generates a random Bell-diagonal state
implicit none
complex(8) :: rbds(4,4) ! Random Bell-diagonal density matrix
complex(8), allocatable :: psi_p(:), psi_m(:), phi_p(:), phi_m(:) ! For the Bell states
real(8), allocatable :: rpv(:) ! For the random probability vector
complex(8), allocatable :: proj(:,:) ! For the projectors
character(10), dimension(5) :: optg ! Options for the generators
allocate( psi_p(4), psi_m(4), phi_p(4), phi_m(4), rpv(4), proj(4,4) )
call bell_basis(psi_p, psi_m, phi_p, phi_m)
optg = 'std' ; call rng_init(optg) ; call rpvg(optg, 4, rpv)
rbds = 0.d0
call projector(psi_p, 4, proj) ; rbds = rbds + rpv(1)*proj
call projector(psi_m, 4, proj) ; rbds = rbds + rpv(2)*proj
call projector(phi_p, 4, proj) ; rbds = rbds + rpv(3)*proj
call projector(phi_m, 4, proj) ; rbds = rbds + rpv(4)*proj
deallocate ( psi_p, psi_m, phi_p, phi_m, rpv, proj )
end
!###################################################################################################################################
! Calling subroutines - RDMG
!###################################################################################################################################
subroutine rdmg(optg, d, rdm) ! Calls the choosed random density matrix generator
implicit none
integer :: d ! Dimension of the random density matrix
complex(8) :: rdm(1:d,1:d) ! The random density matrix
character(10), dimension(5) :: optg ! Options for the generators
if ( optg(5) == "std" ) then ; call rdm_std(optg, d, rdm)
else if ( optg(5) == "ginibre" ) then ; call rdm_ginibre(optg, d, rdm)
else if ( optg(5) == "bures" ) then ; call rdm_bures(optg, d, rdm)
else if ( optg(5) == "ptrace" ) then ; call rdm_ptrace(optg, d, rdm)
endif
end
!###################################################################################################################################
! Basic tests for density matrices
!###################################################################################################################################
subroutine rho_tests(d, rho)
implicit none
integer :: d ! Dimension of the density matrix
complex(8) :: rho(1:d,1:d) ! The random density matrix
complex(8), allocatable :: rhoa(:,:) ! For the adjoint of rho
real(8), allocatable :: W(:) ! For the eigenvalues of rho
real(8) :: trace_he ! For the trace function
real(8) :: norm_hs ! For the Hilbert-Schmidt norm
allocate( rhoa(1:d,1:d), W(1:d) )
write(*,*) 'Verifying if the trace is equal to one'
write(*,*) 'Tr(rho) = ', trace_he(d, rho)
write(*,*) 'Verifying Hermiticity'
call adjoint(d, d, rho, rhoa) ; write(*,*) '||rho-rhoa||_2 = ', norm_hs(d, d, rho-rhoa)
write(*,*) 'Verifying positivity'
call lapack_zheevd('N', d, rho, W) ; write(*,*) 'Eigvals = ', W
deallocate( rhoa, W )
end
!###################################################################################################################################