-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSyringePumper.py
executable file
·249 lines (221 loc) · 10.5 KB
/
SyringePumper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from Adafruit_MotorHAT import Adafruit_MotorHAT, Adafruit_StepperMotor
import time
import atexit
import threading
from collections import deque
from math import exp
#Define class for SyringePump object: handling two syringe motors
class SyringePump(object):
def __init__(self, stepperId1=1, stepperId2=2, stepsPerRev=200, rpm=40000, addr=0x60, stopAtExit=True):
#Initialize syringe motors and threads
self._syringeMotor1 = SyringeMotor(stepperId1, False, stepsPerRev, rpm, addr, stopAtExit)
self._syringeMotor2 = SyringeMotor(stepperId2, True, stepsPerRev, rpm, addr, stopAtExit)
self._motor1Thread = threading.Thread()
self._motor2Thread = threading.Thread()
#Configure to stop at program exit (Extra insurance)
if stopAtExit:
atexit.register(self.stop)
#set parameters after initialization
def setParams(self, spr, rpm):
self._syringeMotor1.setParams(spr, rpm)
self._syringeMotor2.setParams(spr, rpm)
#execute tasks for both motors in one thread
def execute(self, sec1=0, min1=0, hour1=0, sec2=0, min2=0, hour2=0):
if(not self._motor2Thread.isAlive() and len(self._syringeMotor2._taskQueue) != 0):
self._motor2Thread = threading.Thread(target=self._syringeMotor2.executeTasks, args=(sec2, min2, hour2))
self._motor2Thread.start()
if(not self._motor1Thread.isAlive() and len(self._syringeMotor1._taskQueue) != 0):
self._motor1Thread = threading.Thread(target=self._syringeMotor1.executeTasks, args=(sec1, min1, hour1))
self._motor1Thread.start()
#set conversion from microliters to microsteps for motor 1
def setConversMotor1(self, crossSecArea):
self._syringeMotor1.setConvers(crossSecArea)
#set conversion from microliters to microsteps for motor 2
def setConversMotor2(self, crossSecArea):
self._syringeMotor2.setConvers(crossSecArea)
#set initial valve
def setInitialValve(self, valveNum):
self._syringeMotor2.setInitialValve(valveNum)
#set parameters for valves
def setValveNums(self, total, dist):
self._syringeMotor2.setValveNums(total, dist)
#add task to motor one, either to the top or bottom
def addTaskMotor1(self, microLiters, direct, micLitPerMin=0, pos=0, sec=0, min=0, hour=0):
if(pos == 1):
self._syringeMotor1.addTaskToTop(microLiters, direct, micLitPerMin, sec, min, hour)
elif(pos == 0):
self._syringeMotor1.addTaskToBottom(microLiters, direct, micLitPerMin, sec, min, hour)
#add task to motor two, either to the top or bottom
def addTaskMotor2(self, valveNum, pos=0, sec=0, min=0, hour=0, r=False):
if(pos == 1):
self._syringeMotor2.addTaskToTop(valveNum=valveNum, sec=sec, min=min, hour=hour, reset=r)
elif(pos == 0):
self._syringeMotor2.addTaskToBottom(valveNum=valveNum, sec=sec, min=min, hour=hour, reset=r)
#delete task from motor 1
def deleteTaskMotor1(self, pos):
self._syringeMotor1.deleteTask(pos)
#delete task from motor 2
def deleteTaskMotor2(self, pos):
self._syringeMotor2.deleteTask(pos)
#stop the syringe pump (called upon exit)
def stop(self):
self._syringeMotor1.kill()
self._syringeMotor2.kill()
#Define class for a SyringeMotor object: syringe pumping capabilities implemented for a stepper motor
class SyringeMotor(object):
motorMoving = threading.Condition()
availableMove = True
#Constant intrinsic to syringe motor: number of microsteps required to move a linear distance of 1 mm
MICROSTEPS_PER_MM = 317.95
#Constructor for SyringeMotor object
def __init__(self, stepperId, isValveSyringe, stepsPerRev=200, mi_rpm=40000, addr=0x60, stopAtExit=True):
#Initialize motor HAT and stepper motor with frequency and speed
self._mh = Adafruit_MotorHAT(addr)
self._stepper = self._mh.getStepper(stepsPerRev, stepperId)
self._spr = stepsPerRev
self._mi_rpm = mi_rpm
self._stepperId = stepperId
self._taskQueue = deque([])
self._execThread = threading.Thread()
self._commandEvent1 = threading.Event()
self._commandEvent2 = threading.Event()
self._isValveSyringe = isValveSyringe
self.MICROSTEP_PER_MICROLITER = 0.45
self.SINGLE_STEP_LIMIT = 64
self.INTERLEAVE_STEP_LIMIT = 32
self.VALVE_TOT = 6
self.valvePositions = []
self.currentValveNum = 0
self.executing = False
self.commandIndex = 0
self.timeToDie = False
self.commandStatus = "(currently executing)"
#Start with motor off, and configure motor to stop at program exit
self._mh.getMotor(stepperId).run(Adafruit_MotorHAT.RELEASE)
if stopAtExit:
atexit.register(self.stop)
#set parameters after initialization
def setParams(self, spr, rpm):
self._stepper = self._mh.getStepper(spr, self._stepperId)
self._mi_rpm = rpm
#set the conversion from microliters to microsteps, given a cross section area of syringe
def setConvers(self, crossSecArea):
self.MICROSTEP_PER_MICROLITER = SyringeMotor.MICROSTEPS_PER_MM/crossSecArea
self._stepper.setSpeed(self._mi_rpm*self.MICROSTEP_PER_MICROLITER/self._spr)
#set the number of valves on syringe
def setValveNums(self, total, dists):
self.VALVE_TOT = total
self.valvePositions = dists
#set the initial valve position
def setInitialValve(self, valveNum):
self.currentValveNum = valveNum
#move to a specific valve
def moveToValve(self, valveNum=0, s=0, m=0, h=0, reset=False):
if(reset==True):
self.move(1.5*self.valvePositions[self.VALVE_TOT-1], 0, sec=s, min=m, hour=h)
self.currentValveNum = 0
else:
distToMove = 0
if(self.currentValveNum==0):
distToMove = self.valvePositions[valveNum-1]
else:
distToMove = self.valvePositions[valveNum-1] - self.valvePositions[self.currentValveNum-1]
if(distToMove > 0):
self.move(distToMove, 1, sec=s, min=m, hour=h)
else:
self.move(abs(distToMove), 0, sec=s, min=m, hour=h)
self.currentValveNum = valveNum
#move a quantity of microliters
def move(self, microLiters, direct, micLitPerMin=40000, sec=0, min=0, hour=0):
if(sec != 0 or min != 0 or hour !=0):
time.sleep(sec + min*60 + hour*3600)
SyringeMotor.availableMove = False
SyringeMotor.motorMoving.acquire()
if(direct == 0):
dir = Adafruit_MotorHAT.FORWARD
elif(direct == 1):
dir = Adafruit_MotorHAT.BACKWARD
microStepsLeft = float(microLiters)*self.MICROSTEP_PER_MICROLITER
#RPM of stepper motor if syringe apparatus had no friction
theoreticalRPM = int(micLitPerMin*self.MICROSTEP_PER_MICROLITER/self._spr)
#Equation for converting the theoretical RPM parameter to the real RPM, due to friction of the apparatus
realRPM = int(24*(1-exp(-.0185*theoreticalRPM)))
self._stepper.setSpeed(theoreticalRPM*theoreticalRPM/realRPM)
halfStep = False
if(abs(microStepsLeft - int(microStepsLeft)) > .25 and abs(microStepsLeft - int(microStepsLeft)) < 1):
halfStep = True
microStepsLeft = int(microStepsLeft)
if(self.timeToDie):
return
self._stepper.step(microStepsLeft, dir, Adafruit_MotorHAT.SINGLE)
microStepsLeft = 0
if(halfStep):
self._stepper.oneStep(dir, Adafruit_MotorHAT.INTERLEAVE)
if(microStepsLeft == 0):
self.stop()
SyringeMotor.motorMoving.notify()
SyringeMotor.motorMoving.release()
SyringeMotor.availableMove = True
def isMoveAvailable(self):
if SyringeMotor.availableMove:
return True
else:
return False
#add a task to be executed first
def addTaskToTop(self, microLiters=0, direct=1, micLitPerMin=0, sec=0, min=0, hour=0, valveNum=0, reset=False):
if(micLitPerMin==0):
micLitPerMin = self._mi_rpm
if(self._isValveSyringe):
args = [valveNum, sec, min, hour, reset]
else:
args = [microLiters, direct, micLitPerMin, sec, min, hour]
self._taskQueue.appendleft(args)
#add a task to be executed last
def addTaskToBottom(self, microLiters=0, direct=1, micLitPerMin=0, sec=0, min=0, hour=0, valveNum=0, reset=False):
if(micLitPerMin==0):
micLitPerMin = self._mi_rpm
if(self._isValveSyringe):
args = [valveNum, sec, min, hour, reset]
else:
args = [microLiters, direct, micLitPerMin, sec, min, hour]
self._taskQueue.append(args)
#delete a task at specified position in queue
def deleteTask(self, position):
self._taskQueue.rotate(-position)
self._taskQueue.popleft()
self._taskQueue.rotate(position)
#execute the tasks by iterating through queue, optional delay time
def executeTasks(self, sec=0, min=0, hour=0):
if(sec != 0 or min != 0 or hour !=0):
time.sleep(sec + min*60 + hour*3600)
if not self.executing:
self.executing = True
while(len(self._taskQueue) != 0):
if(self.timeToDie):
return
args = self._taskQueue.popleft()
SyringeMotor.motorMoving.acquire()
while not self.isMoveAvailable():
self.commandStatus = "(awaiting executing)"
SyringeMotor.motorMoving.wait()
self.commandStatus = "(currently executing)"
if(self._isValveSyringe):
self._commandEvent2.set()
self.moveToValve(args[0], args[1], args[2], args[3], args[4])
self._commandEvent2.clear()
else:
self._commandEvent1.set()
self.move(args[0], args[1], args[2], args[3], args[4], args[5])
self._commandEvent1.clear()
SyringeMotor.motorMoving.release()
self.commandIndex+=1
else:
print("Queue is already executing.")
self.executing = False
def kill(self):
if(self.executing):
self.timeToDie=True
self.stop()
#stop the motor (atexit.register requires a function parameter)
def stop(self):
self._mh.getMotor(self._stepperId).run(Adafruit_MotorHAT.RELEASE)