-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_seed_stylegan.py
252 lines (203 loc) · 9.63 KB
/
optimize_seed_stylegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import sys
sys.path.append('stylegan3/')
import os
import re
from typing import List, Optional, Tuple, Union
import click
import dnnlib
import numpy as np
import matplotlib.pyplot as plt
import PIL.Image
import torch
import torch.nn as nn
import legacy
import lpips
import utils.utils as utils
import utils.CEM.CEMnet as CEMnet
from SphericalOptimizer import SphericalOptimizer
from utils.GPU_management import Assign_GPU
used_GPU = Assign_GPU()
sys.path.append('../utils/')
SCALE_FACTOR = 32
learning_rate = 0.4
device = torch.device('cuda')
CEM = CEMnet.CEMnet(CEMnet.Get_CEM_Conf(SCALE_FACTOR)).WrapArchitecture_PyTorch(grayscale=False).to(device)
CEM_downsampler = CEMnet.CEM_downsampler(SCALE_FACTOR,grayscale=False,differentiable=True).to(device)
#----------------------------------------------------------------------------
class optimizable_seed(nn.Module):
# A module that optimizes a random seed vector input to styleGAN given a query seed vector/image
# to best match LR content of both generated images
def __init__(self,seed_vector):
super(optimizable_seed,self).__init__()
self.seed_vector = nn.Parameter(data=seed_vector.type(torch.cuda.FloatTensor))
def forward(self):
return self.seed_vector
#----------------------------------------------------------------------------
def make_transform(translate: Tuple[float,float], angle: float):
m = np.eye(3)
s = np.sin(angle/360.0*np.pi*2)
c = np.cos(angle/360.0*np.pi*2)
m[0][0] = c
m[0][1] = s
m[0][2] = translate[0]
m[1][0] = -s
m[1][1] = c
m[1][2] = translate[1]
return m
#----------------------------------------------------------------------------
def load_stylegan(network_pkl):
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
# Construct an inverse rotation/translation matrix and pass to the generator. The
# generator expects this matrix as an inverse to avoid potentially failing numerical
# operations in the network.
if hasattr(G.synthesis, 'input'):
# anchor latent space to w_avg
#shift = G.synthesis.input.affine(G.mapping.w_avg.unsqueeze(0))
# G.synthesis.input.affine.bias.data.add_(shift.squeeze(0))
# G.synthesis.input.affine.weight.data.zero_()
m = make_transform((0,0), 0)
m = np.linalg.inv(m)
G.synthesis.input.transform.copy_(torch.from_numpy(m))
return G
def load_gaussian_fit(G):
if os.path.exists("gaussian_fit.pt"):
gaussian_fit = torch.load("gaussian_fit.pt")
print("Loaded \"gaussian_fit.pt\"")
else:
with torch.no_grad():
torch.manual_seed(0)
latent = torch.randn((100000,512),dtype=torch.float32, device="cuda")
latent_out = G.mapping(latent, None)
gaussian_fit = {"mean": latent_out.mean(0), "std": latent_out.std(0)}
torch.save(gaussian_fit,"gaussian_fit.pt")
print("Saved \"gaussian_fit.pt\"")
return gaussian_fit
def torch_to_numpy_img(img_tensor):
return (img_tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
# diversity exaggeration (DELoss)
def DELoss(im1, im2, L, lpips):
#eps = 1.0e-5
im_diff = L(im1, im2) + lpips(im1, im2)
#z_diff = L(z1, z2)
#err = -torch.clamp((im_diff / (z_diff + eps)), max=1)
err = - im_diff
return err
def train_loop(G, gaussian_fit, lpips_loss, query_seed, target_seed, inject_latent=True):
outdir = os.path.join(outdata_path, 'query_seed'+str(query_seed))
if not os.path.exists(outdir):
os.mkdir(outdir)
truncation_psi = 1
noise_mode = 'random'
iters = 100
alpha_max = 1
alpha_min = 0.8
batch_size = 1
# generate query and target vector
z_query = torch.from_numpy(np.random.RandomState(query_seed).randn(1, G.z_dim)).to(device)
z_target = torch.from_numpy(np.random.RandomState(target_seed).randn(batch_size, G.z_dim)).to(device)
# gen query and tarrget images
#alpha_tensor = (alpha_max - alpha_min) * torch.rand(w.size()[:2], device="cuda") + alpha_min
#w = alpha_tensor[...,None] * w + (1 - alpha_tensor[...,None]) * w_query
w_query = G.mapping(z_query, None).detach() + G.mapping.w_avg
w = G.mapping(z_target, None).detach() + G.mapping.w_avg
query_im = G.synthesis(w_query, noise_mode=noise_mode).detach()
target_ims = G.synthesis(w, noise_mode=noise_mode).detach()
if inject_latent:
seed_module = optimizable_seed(w).to(device)
w_query = w_query.repeat(batch_size, 1, 1)
else:
seed_module = optimizable_seed(z_target).to(device)
# downsample and produce initial images
LR_query_im = CEM_downsampler(query_im).detach()
new_ims = CEM((LR_query_im, target_ims)).detach()
# expand query inputs to batch size
query_ims = query_im.repeat(batch_size, 1, 1, 1)
LR_query_ims = LR_query_im.repeat(batch_size, 1, 1, 1)
# save initial inputs
PIL.Image.fromarray(torch_to_numpy_img(query_im), 'RGB').save(f'{outdir}/query_seed{query_seed:04d}.png')
PIL.Image.fromarray(torch_to_numpy_img(LR_query_im), 'RGB').save(f'{outdir}/query_seedLR{query_seed:04d}.png')
for i in range(batch_size):
PIL.Image.fromarray(torch_to_numpy_img(target_ims[i].unsqueeze(0)), 'RGB').save(f'{outdir}/target_seed{target_seed:04d}_before{i:d}.png')
PIL.Image.fromarray(torch_to_numpy_img(new_ims[i].unsqueeze(0)), 'RGB').save(f'{outdir}/combined{target_seed:04d}_before_{i:d}.png')
# set optimization parameters
L1 = nn.L1Loss()
L2 = nn.MSELoss()
#optimizer = torch.optim.SGD(seed_module.parameters(), lr=learning_rate, momentum=0.9)
optimizer = SphericalOptimizer(torch.optim.SGD, seed_module.parameters(), lr=learning_rate, momentum=0.9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer.opt, mode='min', factor=0.5, patience=5, verbose=True)
# optimize
print(f'starting optimization for query seed {query_seed:d} and target seed {target_seed:d}...')
loss_array = []
running_loss_total = 0
for i in range(iters):
optimizer.opt.zero_grad()
# gen target image and downsample using CEM
w_target = seed_module()
if inject_latent:
w_target = w_target*gaussian_fit["std"] + gaussian_fit["mean"]
w_target += G.mapping.w_avg
else:
w_target = w_target*gaussian_fit["std"][0] + gaussian_fit["mean"][0]
w_target = G.mapping(w_target, None) + G.mapping.w_avg
target_ims = G.synthesis(w_target, noise_mode=noise_mode)
LR_target_ims = CEM_downsampler(target_ims)
# compute losss
loss = L1(LR_target_ims, LR_query_ims)+\
lpips_loss(LR_target_ims, LR_query_ims).mean()+\
0.2*DELoss(target_ims, query_ims, L1, lpips_loss)
# Backpropagation
loss.backward()
optimizer.step()
scheduler.step(loss.item())
# save losses, update scheduler
loss_array.append(loss.item())
running_loss_total += loss.item()
if i != 0 and i % 10 == 0:
av_running_loss = running_loss_total / 10
running_loss_total = 0
print(f'loss at step {i:d}: {av_running_loss:.4f}')
# stop if sufficiently converged
if av_running_loss < -0.1 or optimizer.opt.param_groups[0]['lr'] < 1e-03:
break
if i != 0 and ((i < 100 and i % 10 == 0) or i == 100 or i % 250 == 0 ):
#PIL.Image.fromarray(torch_to_numpy_img(target_im), 'RGB').save(f'{outdir}/target_seed{target_seed:04d}_{i:04d}.png')
new_ims = CEM((LR_query_im, target_ims))
for j in range(batch_size):
PIL.Image.fromarray(torch_to_numpy_img(new_ims[j].unsqueeze(0)), 'RGB').save(f'{outdir}/combined{target_seed:04d}_{j:d}_{i:d}.png')
# save loss curve
fig = plt.figure()
ax = plt.axes()
ax.scatter(np.arange(len(loss_array)),loss_array)
plt.savefig(outdir+'/loss_curve_'+str(target_seed)+'.png')
new_ims = CEM((LR_query_im, target_ims))
for i in range(batch_size):
# save image results
PIL.Image.fromarray(torch_to_numpy_img(target_ims[i].unsqueeze(0)), 'RGB').save(f'{outdir}/target_seed{target_seed:04d}_{i:d}.png')
PIL.Image.fromarray(torch_to_numpy_img(LR_target_ims[i].unsqueeze(0)), 'RGB').save(f'{outdir}/target_seedLR{target_seed:04d}_{i:d}.png')
PIL.Image.fromarray(torch_to_numpy_img(new_ims[i].unsqueeze(0)), 'RGB').save(f'{outdir}/combined{target_seed:04d}_{i:d}.png')
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
@click.option('--LRnum', 'LRnum', type=int, help='number of LR images to generate from', default=50)
@click.option('--HRperLR', 'HRperLR', type=int, help='number of HR images to generate for each LR images', default=7)
def generate_images(
network_pkl: str,
outdir: str,
LRnum: int,
HRperLR: int
):
torch.manual_seed(0)
torch.cuda.manual_seed(0)
if not os.path.exists(outdir):
os.makedirs(outdir, exist_ok=True)
G = load_stylegan(network_pkl)
gaussian_fit = load_gaussian_fit(G)
lpips_loss = lpips.LPIPS(net='vgg').to(device)
target_seeds = np.random.RandomState(0).randint(5000, size=HRperLR)
for query_seed in range(LRnum):
for target_seed in target_seeds:
train_loop(G, gaussian_fit, lpips_loss, query_seed, target_seed, inject_latent=False)
if __name__ == "__main__":
generate_images()