-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathflame.py
855 lines (726 loc) · 39.7 KB
/
flame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
"""
Code heavily inspired by https://github.com/HavenFeng/photometric_optimization/blob/master/models/FLAME.py.
Please consider citing their work if you find this code useful. The code is subject to the license available via
https://github.com/vchoutas/smplx/edit/master/LICENSE
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
"""
import sys
sys.path.append('./deps')
from nha.util.lbs import lbs, batch_rodrigues, vertices2landmarks
from nha.util.meshes import face_vertices, vertex_normals
from nha.util.log import get_logger
from nha.util.meshes import edge_subdivide
from pytorch3d.io import load_obj, save_obj
from collections import OrderedDict
from scipy.spatial.transform import Rotation
from pytorch3d.structures import Meshes
import torch
import torch.nn as nn
import numpy as np
import pickle
import torch.nn.functional as F
logger = get_logger(__name__)
FLAME_MODEL_PATH = 'assets/flame/generic_model.pkl'
FLAME_MESH_MOUTH_PATH = 'assets/flame/head_template_mesh_mouth.obj'
FLAME_PARTS_MOUTH_PATH = 'assets/flame/FLAME_masks_mouth.pkl'
FLAME_LMK_PATH = 'assets/flame/landmark_embedding_with_eyes.npy'
FLAME_LOWER_NECK_FACES_PATH = 'assets/flame/lower_neck_face_idcs.npy'
FLAME_N_SHAPE = 300
FLAME_N_EXPR = 100
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class Struct(object):
def __init__(self, **kwargs):
for key, val in kwargs.items():
setattr(self, key, val)
def rot_mat_to_euler(rot_mats):
# Calculates rotation matrix to euler angles
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
return torch.atan2(-rot_mats[:, 2, 0], sy)
class FlameHead(nn.Module):
"""
Given flame parameters this class generates a differentiable FLAME function
which outputs the a mesh and 2D/3D facial landmarks
"""
def __init__(self,
shape_params,
expr_params,
flame_model_path=FLAME_MODEL_PATH,
flame_lmk_embedding_path=FLAME_LMK_PATH,
flame_template_mesh_path=FLAME_MESH_MOUTH_PATH,
flame_parts_path=FLAME_PARTS_MOUTH_PATH,
eye_limits=((-50, 50), (-50, 50), (-0.1, 0.1)),
neck_limits=((-90, 90), (-60, 60), (-80, 80)),
jaw_limits=((-5, 60), (-0.1, 0.1), (-0.1, 0.1)),
global_limits=((-20, 20), (-90, 90), (-20, 20)),
ignore_faces=[],
upsample_regions=OrderedDict(),
spatial_blur_sigma=0.01
):
super().__init__()
global_limits = torch.tensor(global_limits).float() / 180 * np.pi
self.register_buffer('global_limits', global_limits)
neck_limits = torch.tensor(neck_limits).float() / 180 * np.pi
self.register_buffer('neck_limits', neck_limits)
jaw_limits = torch.tensor(jaw_limits).float() / 180 * np.pi
self.register_buffer('jaw_limits', jaw_limits)
eye_limits = torch.tensor(eye_limits).float() / 180 * np.pi
self.register_buffer('eye_limits', eye_limits)
self._ignore_faces = ignore_faces
self.n_shape_params = shape_params
self.n_expr_params = expr_params
with open(flame_model_path, 'rb') as f:
ss = pickle.load(f, encoding='latin1')
flame_model = Struct(**ss)
self.dtype = torch.float32
# The vertices of the template model
self.register_buffer('_v_template',
to_tensor(to_np(flame_model.v_template), dtype=self.dtype))
# add faces and uvs
_, faces, aux = load_obj(flame_template_mesh_path, load_textures=False)
self.register_buffer('_faces', faces.verts_idx, persistent=False)
self.register_buffer('_faces_uvs', faces.textures_idx, persistent=False)
self.register_buffer('_vertex_uvs', aux.verts_uvs, persistent=False)
# load vertex lists corresponding to parts of the face
with open(flame_parts_path, 'rb') as f:
parts = pickle.load(f, encoding='latin1')
self._parts = OrderedDict()
for key in sorted(parts.keys()):
self._parts[key] = torch.tensor(parts[key])
# The shape components and expression
shapedirs = to_tensor(to_np(flame_model.shapedirs), dtype=self.dtype)
shapedirs = torch.cat([shapedirs[:, :, :shape_params],
shapedirs[:, :, 300:300 + expr_params]], 2)
self.register_buffer('shapedirs', shapedirs)
# The pose components
num_pose_basis = flame_model.posedirs.shape[-1]
posedirs = np.reshape(flame_model.posedirs, [-1, num_pose_basis]).T
self.register_buffer('posedirs', to_tensor(to_np(posedirs), dtype=self.dtype))
#
self.register_buffer('J_regressor',
to_tensor(to_np(flame_model.J_regressor), dtype=self.dtype))
parents = to_tensor(to_np(flame_model.kintree_table[0])).long()
parents[0] = -1
self.register_buffer('parents', parents)
self.register_buffer('lbs_weights', to_tensor(to_np(flame_model.weights), dtype=self.dtype))
# Static and Dynamic Landmark embeddings for FLAME
lmk_embeddings = np.load(flame_lmk_embedding_path, allow_pickle=True,
encoding='latin1')
lmk_embeddings = lmk_embeddings[()]
self.register_buffer('lmk_faces_idx',
torch.tensor(lmk_embeddings['static_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('lmk_bary_coords',
torch.tensor(lmk_embeddings['static_lmk_bary_coords'],
dtype=self.dtype))
self.register_buffer('dynamic_lmk_faces_idx',
lmk_embeddings['dynamic_lmk_faces_idx'].long())
self.register_buffer('dynamic_lmk_bary_coords',
lmk_embeddings['dynamic_lmk_bary_coords'].float())
self.register_buffer('full_lmk_faces_idx',
torch.tensor(lmk_embeddings['full_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('full_lmk_bary_coords',
torch.tensor(lmk_embeddings['full_lmk_bary_coords'], dtype=self.dtype))
neck_kin_chain = []
NECK_IDX = 1
curr_idx = torch.tensor(NECK_IDX, dtype=torch.long)
while curr_idx != -1:
neck_kin_chain.append(curr_idx)
curr_idx = self.parents[curr_idx]
self.register_buffer('neck_kin_chain', torch.stack(neck_kin_chain))
self.register_buffer("spatially_blurred_vert_labels",
self._get_spatially_blurred_vert_labels(spatial_blur_sigma),
persistent=False)
# performing upsampling IMPORTANT TO DO IT HERE WHERE ALL ASSETS ARE LOADED ALREADY
# BUT NO DERIVED QUANTITIES ARE CALCULATED YET
self._upsample_regions(upsample_regions)
# self._upsample_faces(list(range(len(self._faces))))
###
# calculating derived attributes
###
v_temp = self._v_template
v_min = v_temp.min(dim=0, keepdim=True).values
v_max = v_temp.max(dim=0, keepdim=True).values
v_temp = (v_temp - v_min) / (v_max - v_min)
v_temp = 2 * (v_temp - 0.5)
self.register_buffer('_v_template_normed', v_temp, persistent=False)
self.register_buffer('_face_coords', self._v_template[self._faces], persistent=False)
faces_coords_normed = self._face_coords - self._face_coords.flatten(end_dim=1).min(
dim=0).values.view(1, 1, 3)
faces_coords_normed /= faces_coords_normed.flatten(end_dim=1).max(dim=0).values.view(1, 1,
3)
faces_coords_normed = faces_coords_normed * 2 - 1
self.register_buffer('_face_coords_normed', faces_coords_normed, persistent=False)
# create uvcoords per face --> this is what you can use for uv map rendering
# range from -1 to 1 (-1, -1) = left top; (+1, +1) = right bottom
# pad 1 to the end
uvcoords = torch.cat([self._vertex_uvs, torch.ones(self._vertex_uvs.shape[0], 1)], -1)
uvcoords = uvcoords * 2 - 1
uvcoords[..., 1] = -uvcoords[..., 1]
face_verts = face_vertices(uvcoords[None, ...], self._faces_uvs[None, ...])
self.register_buffer('_face_uvcoords', face_verts[0], persistent=False)
# create a uvmap index for every vertex (0 index is flame head uv, 1 index is teeth uv)
vertex_uvmap = torch.zeros(len(self._v_template)).long()
zero_index = torch.tensor([]).long()
vertex_uvmap[torch.cat([self._parts.get('mouth', zero_index),
self._parts.get('teeth', zero_index)])] = 1
face_uvmap = vertex_uvmap[self._faces.view(-1)].view(self._faces.shape)
face_uvmap = face_uvmap.min(dim=1)[0]
self.register_buffer('_face_uvmap', face_uvmap, persistent=False)
# storing normals
template_normals = vertex_normals(self._v_template[None], self._faces[None])[0]
self.register_buffer("_vertex_normals", template_normals, persistent=False)
self.register_buffer("_face_normals", self._vertex_normals[self._faces], persistent=False)
# DROPPING FACES IF REQUESTED (also drops unused vertices)
if len(self._ignore_faces) != 0:
filter_dict = self._get_vertNface_filters(self._ignore_faces)
vert_reindexer = filter_dict["vert_reindexer"]
uv_reindexer = filter_dict["uv_reindexer"]
self.register_buffer("_vert_filter", filter_dict["vert_filter"], persistent=False)
self.register_buffer("_face_filter", filter_dict["face_filter"], persistent=False)
self.register_buffer("_uv_filter", filter_dict["uv_filter"], persistent=False)
faces_filtered = vert_reindexer[self._faces[self._face_filter]]
faces_uvs_filtered = uv_reindexer[self._faces_uvs[self._face_filter]]
verts_filtered = self._v_template[self._vert_filter]
uvs_filtered = self._vertex_uvs[self._uv_filter]
self.register_buffer("_v_template_filtered", verts_filtered, persistent=False)
self.register_buffer("_v_template_normed_filtered",
self._v_template_normed[self._vert_filter], persistent=False)
self.spatially_blurred_vert_labels = self.spatially_blurred_vert_labels[filter_dict["vert_filter"]]
self.register_buffer("_faces_filtered", faces_filtered, persistent=False)
self.register_buffer("_faces_uvs_filtered", faces_uvs_filtered, persistent=False)
self.register_buffer("_uvs_filtered", uvs_filtered, persistent=False)
self._parts_filtered = OrderedDict()
for key, verts in self._parts.items():
verts_filtered = torch.tensor(list(set(verts) - filter_dict["ignored_verts"]))
self._parts_filtered[key] = vert_reindexer[verts_filtered]
# semantic vert_labels
self.register_buffer("vert_labels", torch.zeros(len(self.v_template),
len(self.get_body_parts()),
dtype=torch.float), persistent=False)
for i, (key, verts) in enumerate(self.get_body_parts().items()):
self.vert_labels[verts, i] = 1.
@property
def v_template(self):
return self._v_template_filtered if len(self._ignore_faces) != 0 else self._v_template
@property
def v_template_normed(self):
return self._v_template_normed_filtered if len(self._ignore_faces) != 0 \
else self._v_template_normed
@property
def faces(self):
return self._faces_filtered if len(self._ignore_faces) != 0 else self._faces
@property
def face_coords(self):
return self._face_coords[self._face_filter] if len(self._ignore_faces) != 0 \
else self._face_coords
@property
def face_coords_normed(self):
return self._face_coords_normed[self._face_filter] if len(
self._ignore_faces) != 0 else self._face_coords_normed
@property
def faces_uvs(self):
return self._faces_uvs_filtered if len(self._ignore_faces) != 0 else self._faces_uvs
@property
def face_uvcoords(self):
return self._face_uvcoords[self._face_filter] if len(
self._ignore_faces) != 0 else self._face_uvcoords
@property
def face_uvmap(self):
return self._face_uvmap[self._face_filter] if len(
self._ignore_faces) != 0 else self._face_uvmap
@property
def face_normals(self):
return self._face_normals[self._face_filter] if len(
self._ignore_faces) != 0 else self._face_normals
@property
def vertex_uvs(self):
return self._vertex_uvs[self._uv_filter] if len(
self._ignore_faces) != 0 else self._vertex_uvs
@property
def vertex_normals(self):
return self._vertex_normals[self._vert_filter] if len(
self._ignore_faces) != 0 else self._vertex_normals
def _get_spatially_blurred_vert_labels(self, sigma=0.01):
"""
calculates spatially blurred semantic vertex labels of shape V x C
uses unmodified template mesh (due to memory constraints) so make sure to upsample result when upsampling mesh
:return: V x C with scores between 0 and 1.
"""
UPPER_PLACEHOLDER = 1
meshes = Meshes(verts=[self._v_template], faces=[self._faces])
verts = meshes.verts_packed()
edges = meshes.edges_packed()
V = verts.shape[0]
# initializing distance table
distances = torch.zeros(V, V, dtype=verts.dtype, device=verts.device) + UPPER_PLACEHOLDER
distances[torch.arange(V), torch.arange(V)] = 0
e1, e2 = edges.unbind(1)
distances[e1, e2] = distances[e2, e1] = torch.linalg.norm(verts[e1] - verts[e2], dim=-1, ord=2)
max_neighbours = (torch.mean(torch.sum(distances < UPPER_PLACEHOLDER, dim=-1).float() - 1) * 2).int()
assert torch.max(distances) == UPPER_PLACEHOLDER # check if upper placeholder was set high enough
# iteratively propagate distances to linked vertices
v_helper = torch.arange(V).view(V, 1).expand(V, max_neighbours)
for i in range(5):
neighbours = torch.argsort(distances, dim=-1)[:, :max_neighbours] # V x neighb
distances = torch.min(distances[neighbours] + distances[v_helper, neighbours].unsqueeze(-1), dim=1).values
weights = torch.softmax((-(distances ** 2) / (2 * sigma ** 2)), dim=-1)
vert_labels = torch.zeros(V, len(self._parts), dtype=torch.float, device=self._v_template.device)
for i, (key, verts) in enumerate(self._parts.items()):
vert_labels[verts, i] = 1.
blurred_semantics = torch.matmul(weights, vert_labels) # (V, C)
return blurred_semantics
def _get_vertNface_filters(self, ignored_faces):
device = self._faces.device
# filtered faces
face_filter = torch.ones(len(self._faces)).bool()
face_filter[ignored_faces] = False
new_faces = self._faces[face_filter]
new_face_uvs = self._faces_uvs[face_filter]
# vertex filter
vertex_filter = torch.zeros(len(self._v_template)).bool()
vertex_filter[new_faces] = True
ignored_verts = set(range(len(self._v_template))) - set(
torch.unique(new_faces).numpy().astype(int))
# uv filter
uv_filter = torch.zeros(len(self._vertex_uvs)).bool()
uv_filter[new_face_uvs] = True
ignored_uvs = set(range(len(self._vertex_uvs))) - set(
torch.unique(new_face_uvs).numpy().astype(int))
oldvertidx2newvertidx = torch.tensor(
[vertex_filter[:i + 1].long().sum() - 1 for i in range(len(vertex_filter))],
device=device)
olduvidx2newuvidx = torch.tensor(
[uv_filter[:i + 1].long().sum() - 1 for i in range(len(uv_filter))],
device=device)
oldfaceidx2newfaceidx = torch.tensor(
[face_filter[:i + 1].sum() - 1 for i in range(len(face_filter))],
device=device)
return dict(vert_filter=vertex_filter, face_filter=face_filter, uv_filter=uv_filter,
vert_reindexer=oldvertidx2newvertidx,
face_reindexer=oldfaceidx2newfaceidx,
uv_reindexer=olduvidx2newuvidx,
ignored_verts=ignored_verts,
ignored_uvs=ignored_uvs)
def _upsample_regions(self, upsample_regions: OrderedDict):
"""
:param upsample_regions: dict
"face_region": upsample_factor (int)
:return:
"""
if len(upsample_regions) == 0:
return
for key, val in upsample_regions.items():
if key != "all" and val > 0:
raise NotImplementedError("Seperated upsampling of different regions not implemented.")
if "all" in upsample_regions and upsample_regions["all"] > 0:
for i in range(upsample_regions["all"]):
eye_vert_idcs = self.get_body_part_vert_idcs(*[part for part in self._parts if "eyeball" in part],
consider_full_flame_model=True, )
eye_face_idcs = self.faces_of_verts(eye_vert_idcs,
consider_full_flame_model=True,
return_face_idcs=True)[1]
face_idcs = list(set(range(len(self._faces))) - set(self._ignore_faces) - set(eye_face_idcs))
self._upsample_faces(face_idcs)
# max_count = max([v for v in upsample_regions.values()])
# for i in range(max_count):
# face_idcs = []
# for part, upsample_count in upsample_regions.items():
# if i < upsample_count:
# _, faces = self.faces_of_verts(self.get_body_part_vert_idcs(part, consider_full_flame_model=True),
# consider_full_flame_model=True, return_face_idcs=True)
# face_idcs += faces
# self._upsample_faces(face_idcs)
def _upsample_faces(self, face_idcs):
"""
splits every given face into 3 subfaces and performs necessary adjustments to flame model
:param face_idcs: index list of length F'
:return:
"""
face_idcs = list(np.unique(face_idcs))
n_v = len(self._v_template)
n_t = len(self._vertex_uvs)
n_f = len(self._faces)
verts, uvs, faces, uv_faces, edges, uv_edges \
= edge_subdivide(vertices=self._v_template.cpu().numpy(),
uvs=self._vertex_uvs.cpu().numpy(),
faces=self._faces[face_idcs].cpu().numpy(),
uvfaces=self._faces_uvs[face_idcs].cpu().numpy())
faces = torch.cat((self._faces, torch.tensor(faces[len(face_idcs):],
dtype=self._faces.dtype,
device=self._faces.device)), dim=0)
uv_faces = torch.cat((self._faces_uvs, torch.tensor(uv_faces[len(face_idcs):],
dtype=self._faces_uvs.dtype,
device=self._faces_uvs.device)), dim=0)
n_edges = len(edges)
self.register_buffer("_v_template", torch.tensor(verts, dtype=self._v_template.dtype),
persistent=False)
self.register_buffer("_vertex_uvs", torch.tensor(uvs, dtype=self._vertex_uvs.dtype),
persistent=False)
self.register_buffer("_faces", faces, persistent=False)
self.register_buffer("_faces_uvs", uv_faces, persistent=False)
# calculate new blendshapes
new_shapedirs = self.shapedirs[edges] # n_edges x 2 x 3 x 400
new_shapedirs = new_shapedirs.mean(dim=1) # n_edges x 3 x 400
new_posedirs = self.posedirs.permute(1, 0).view(n_v, 3, 36) # V x 3 x 36
new_posedirs = new_posedirs[edges] # n_edges x 2 x 3 x 36
new_posedirs = new_posedirs.mean(dim=1) # n_edges x 3 x 36
new_posedirs = new_posedirs.view(n_edges * 3, 36).permute(1, 0) # 36 x n_edges * 3
self.register_buffer("shapedirs", torch.cat((self.shapedirs, new_shapedirs), dim=0),
persistent=False)
self.register_buffer("posedirs", torch.cat((self.posedirs, new_posedirs), dim=1),
persistent=False)
# calculate new lbs components
new_J_regressor = torch.zeros(5, n_edges).to(self.J_regressor.dtype).to(self.J_regressor.device)
new_lbs_weights = self.lbs_weights[edges] # n_edges x 2 x 5
new_lbs_weights = new_lbs_weights.mean(dim=1) # n_edges x 5
self.register_buffer("J_regressor", torch.cat((self.J_regressor, new_J_regressor), dim=1),
persistent=False)
self.register_buffer("lbs_weights", torch.cat((self.lbs_weights, new_lbs_weights), dim=0),
persistent=False)
# update body parts
for part, idcs in self._parts.items():
new_vert_idcs = []
for i in range(len(edges)):
if edges[i, 0] in idcs and edges[i, 1] in idcs:
new_vert_idcs.append(i + n_v)
if new_vert_idcs:
new_vert_idcs = torch.tensor(new_vert_idcs, dtype=idcs.dtype, device=idcs.device)
self._parts[part] = torch.cat((idcs, new_vert_idcs), dim=0)
# ignore new faces if parent face was to be ignored
ignored_upsampled_faces = list(set.intersection(set(self._ignore_faces), set(face_idcs)))
if ignored_upsampled_faces:
# each parent face produces 4 child faces that are stacked on top of face stack. child faces always stick
# together (see edge_subdivide()). So idcs of child face of parent face with index i are given by:
# c0 = n_faces + i * 4 + 0, c1 = n_faces + i*4 + 1, ...
ignored_upsampled_faces_idcs = np.array([face_idcs.index(f) for f in ignored_upsampled_faces])
ignored_upsampled_faces_idcs = n_f + ignored_upsampled_faces_idcs * 4
new_ignored_faces = np.concatenate((ignored_upsampled_faces_idcs,
ignored_upsampled_faces_idcs + 1,
ignored_upsampled_faces_idcs + 2,
ignored_upsampled_faces_idcs + 3), axis=0)
new_ignored_faces = list(new_ignored_faces)
else:
new_ignored_faces = []
# ignore old faces
self._ignore_faces = list(set.union(set(self._ignore_faces), set(face_idcs), set(new_ignored_faces)))
# calculate blurred vert labels
new_spatially_blurred_vert_labels = self.spatially_blurred_vert_labels[edges].mean(dim=1)
self.spatially_blurred_vert_labels = torch.cat((self.spatially_blurred_vert_labels,
new_spatially_blurred_vert_labels), dim=0)
def save_2_obj(self, path,
shape=None,
expr=None,
rotation=None,
neck=None,
jaw=None,
eyes=None,
use_rotation_limits=True):
if shape is None:
shape = torch.zeros(1, 300, device=self._v_template.device, dtype=self._v_template.dtype)
if expr is None:
expr = torch.zeros(1, 100, device=self._v_template.device, dtype=self._v_template.dtype)
if rotation is None:
rotation = torch.zeros(1, 3, device=self._v_template.device, dtype=self._v_template.dtype)
if neck is None:
neck = torch.zeros(1, 3, device=self._v_template.device, dtype=self._v_template.dtype)
if jaw is None:
jaw = torch.zeros(1, 3, device=self._v_template.device, dtype=self._v_template.dtype)
if eyes is None:
eyes = torch.zeros(1, 6, device=self._v_template.device, dtype=self._v_template.dtype)
from nha.util.general import write_obj
verts = self.forward(shape.view(1, 300), expr.view(1, 100), rotation.view(1, 3), neck.view(1, 3),
jaw.view(1, 3), eyes.view(1, 6), return_landmarks=None,
use_rotation_limits=use_rotation_limits)
write_obj(path, verts[0], self.faces, self.faces_uvs, self.vertex_uvs)
def _find_dynamic_lmk_idx_and_bcoords(self, pose, dynamic_lmk_faces_idx,
dynamic_lmk_b_coords,
neck_kin_chain, dtype=torch.float32):
"""
Selects the face contour depending on the reletive position of the head
Input:
vertices: N X num_of_vertices X 3
pose: N X full pose
dynamic_lmk_faces_idx: The list of contour face indexes
dynamic_lmk_b_coords: The list of contour barycentric weights
neck_kin_chain: The tree to consider for the relative rotation
dtype: Data type
return:
The contour face indexes and the corresponding barycentric weights
"""
batch_size = pose.shape[0]
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
neck_kin_chain)
rot_mats = batch_rodrigues(
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
rel_rot_mat = torch.eye(3, device=pose.device,
dtype=dtype).unsqueeze_(dim=0).expand(batch_size, -1, -1)
for idx in range(len(neck_kin_chain)):
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
y_rot_angle = torch.round(
torch.clamp(rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
max=39)).to(dtype=torch.long)
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
y_rot_angle = (neg_mask * neg_vals +
(1 - neg_mask) * y_rot_angle)
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
0, y_rot_angle)
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
0, y_rot_angle)
return dyn_lmk_faces_idx, dyn_lmk_b_coords
def select_3d68(self, vertices):
landmarks3d = vertices2landmarks(vertices, self._faces,
self.full_lmk_faces_idx.repeat(vertices.shape[0], 1),
self.full_lmk_bary_coords.repeat(vertices.shape[0], 1, 1))
return landmarks3d
def get_body_parts(self, consider_full_flame_model=False):
"""
returns body part vertex index list dictionary
- keys: body part names
- values: list of vertex idcs
If consider_full_flame_model is True: returns vertex idcs of unfiltered mesh, otherwise applies filters as
specified via self._ignore_faces to vertices and faces and returns body parts dict with corrected vertex idcs
:param consider_full_flame_model:
:return:
"""
return self._parts_filtered if len(
self._ignore_faces) != 0 and not consider_full_flame_model else self._parts
def get_body_part_vert_idcs(self, *parts, consider_full_flame_model=False):
"""
returns vertex indices that are part of list of specified body parts (strings). If '-' is added at beginning of
body part name (e.g. '-face'), excludes body part.
ATTENTION: part list is not commutative if there are overlaps between the
body parts and at least one body part has prefix '-'
If 'consider_full_flame_model' is True: returns vertex idcs of unfiltered mesh, otherwise applies filters as
specified via self._ignore_faces to vertices and faces and returns body parts dict with corrected vertex idcs
:param parts:
:return: torch tensor with vertex idcs
"""
part_dict = self.get_body_parts(consider_full_flame_model=consider_full_flame_model)
ret = set()
for p in parts:
if p[0] == '-':
ret = ret - set(part_dict[p[1:]].tolist())
else:
ret = set.union(ret, part_dict[p].tolist())
ret = torch.tensor(sorted(ret), device=self._v_template.device)
# sorting is most likely not necessary but done here to ensure deterministic order of idcs
return ret
def find_body_part_expr_params(self, *parts):
"""
returns the array of idcs of expression parameters that affect body parts most.
Sorted in descending order (first idx corresponds to expr. param with biggest impact)
:param parts: same convention as in get_body_part_vert_idcs()
:return: torch tensor of len 100 with argsorted expression param idcs
"""
vert_idcs = self.get_body_part_vert_idcs(*parts, consider_full_flame_model=True)
deviations = self.shapedirs[vert_idcs].norm(p=2, dim=1).mean(dim=0)
return torch.argsort(deviations[self.n_shape_params:], descending=True)
def faces_of_verts(self, vert_idcs, consider_full_flame_model=False, return_face_idcs=False):
"""
calculates face tensor of shape F x 3 with face spanned by vertices in flame mesh
all vertices of the faces returned by this function contain only vertices from vert_idcs
:param vert_idcs:
:param consider_full_flame_model:
:return_face_idcs: if True, also returns list of relevant face idcs
:return:
"""
all_faces = self._faces if consider_full_flame_model else self._faces_filtered # F x 3
vert_idcs = vert_idcs.to(all_faces.device)
vert_faces = []
face_idcs = []
for i, f in enumerate(all_faces):
keep_face = True
for idx in f:
if not idx in vert_idcs:
keep_face = False
if keep_face:
vert_faces.append(f)
face_idcs.append(i)
vert_faces = torch.stack(vert_faces)
if return_face_idcs:
return vert_faces, face_idcs
return vert_faces
def _apply_rotation_limit(self, rotation, limit):
r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
diff = r_max - r_min
return r_min + (torch.tanh(rotation) + 1) / 2 * diff
def apply_rotation_limits(self, neck=None, jaw=None):
"""
method to call for applying rotation limits. Don't use _apply_rotation_limit() in other methods as this
might cause some bugs if we change which poses are affected by rotation limits. For this reason, in this method,
all affected poses are limited within one function so that if we add more restricted poses, they can just be
updated here
:param neck:
:param jaw:
:return:
"""
neck = self._apply_rotation_limit(neck, self.neck_limits) if neck is not None else None
jaw = self._apply_rotation_limit(jaw, self.jaw_limits) if jaw is not None else None
ret = [i for i in [neck, jaw] if i is not None]
return ret[0] if len(ret) == 1 else ret
def _revert_rotation_limit(self, rotation, limit):
"""
inverse function of _apply_rotation_limit()
from rotation angle vector (rodriguez) -> scalars from -inf ... inf
:param rotation: tensor of shape N x 3
:param limit: tensor of shape 3 x 2 (min, max)
:return:
"""
r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
diff = r_max - r_min
rotation = rotation.clone()
for i in range(3):
rotation[:, i] = torch.clip(rotation[:, i],
min=r_min[0, i] + diff[0, i] * .01,
max=r_max[0, i] - diff[0, i] * .01)
return torch.atanh((rotation - r_min) / diff * 2 - 1)
def revert_rotation_limits(self, neck, jaw):
"""
inverse function of apply_rotation_limits()
from rotation angle vector (rodriguez) -> scalars from -inf ... inf
:param rotation:
:param limit:
:return:
"""
neck = self._revert_rotation_limit(neck, self.neck_limits)
jaw = self._revert_rotation_limit(jaw, self.jaw_limits)
return neck, jaw
def get_neutral_joint_rotations(self):
res = {}
for name, limit in zip(['neck', 'jaw', 'global', 'eyes'],
[self.neck_limits, self.jaw_limits,
self.global_limits, self.eye_limits]):
r_min, r_max = limit[:, 0], limit[:, 1]
diff = r_max - r_min
res[name] = torch.atanh(-2 * r_min / diff - 1)
# assert (r_min + (torch.tanh(res[name]) + 1) / 2 * diff) < 1e-7
return res
def forward(self,
shape,
expr,
rotation,
neck,
jaw,
eyes,
offsets=None,
translation=None,
zero_centered=True,
use_rotation_limits=True,
return_landmarks='static',
return_joints=False,
return_mouth_conditioning=False,
**kwargs):
"""
Input:
shape_params: N X number of shape parameters
expression_params: N X number of expression parameters
pose_params: N X number of pose parameters (6)
return:d
vertices: N X V X 3
landmarks: N X number of landmarks X 3
"""
device = self._v_template.device
dtype = self._v_template.dtype
N = len(shape)
batch_size = shape.shape[0]
# apply limits to joint rotations
if use_rotation_limits:
neck, jaw = self.apply_rotation_limits(neck=neck, jaw=jaw)
if eyes is None:
eyes = self.eye_pose.expand(batch_size, -1)
else:
eyes = torch.cat([self._apply_rotation_limit(eyes[:, :3], self.eye_limits),
self._apply_rotation_limit(eyes[:, 3:], self.eye_limits)], dim=1)
betas = torch.cat([shape, expr], dim=1)
full_pose = torch.cat([rotation, neck, jaw, eyes], dim=1)
template_vertices = self._v_template.unsqueeze(0).expand(batch_size, -1, -1)
# fill up offsets for filtered out vertices with 0s
if offsets is not None and len(self._ignore_faces) != 0:
offsets_ = torch.zeros(N, len(self._v_template), 3, dtype=dtype, device=device)
offsets_.permute(1, 0, 2)[self._vert_filter] = offsets.permute(1, 0, 2)
else:
offsets_ = offsets
faces = self._faces.unsqueeze(0).expand(batch_size, -1, -1)
vertices, J, mat_rot = lbs(betas, full_pose, offsets_, template_vertices,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, dtype=self.dtype, faces=faces)
if zero_centered:
vertices = vertices - J[:, [0]]
J = J - J[:, [0]]
if translation is not None:
vertices = vertices + translation[:, None, :]
J = J + translation[:, None, :]
filtered_vertices = vertices
if len(self._ignore_faces) != 0:
filtered_vertices = vertices.permute(1, 0, 2)[self._vert_filter].permute(1, 0, 2)
ret_vals = [filtered_vertices]
# compute landmarks if desired
if return_landmarks is not None:
assert return_landmarks in ['static', 'dynamic']
if return_landmarks == 'static':
bz = vertices.shape[0]
landmarks = vertices2landmarks(vertices, self._faces,
self.full_lmk_faces_idx.repeat(bz, 1),
self.full_lmk_bary_coords.repeat(bz, 1, 1))
else:
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(dim=0).expand(batch_size, -1)
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).expand(batch_size, -1, -1)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = self._find_dynamic_lmk_idx_and_bcoords(
full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain, dtype=self.dtype)
lmk_faces_idx = torch.cat([dyn_lmk_faces_idx, lmk_faces_idx], 1)
lmk_bary_coords = torch.cat([dyn_lmk_bary_coords, lmk_bary_coords], 1)
landmarks = vertices2landmarks(vertices, self._faces,
lmk_faces_idx,
lmk_bary_coords)
ret_vals.append(landmarks)
if return_joints:
ret_vals.append(J)
if return_mouth_conditioning:
mouth_vert_pair_idcs = torch.tensor([[3506, 3531], [1670, 2906], [1738, 2882],
[1730, 2845], [1775, 2853], [1803, 2787],
[2853, 2882], [2787, 2906], [1670, 1803], [1738, 1775]])
mouth_vert_coords = vertices.permute(1, 0, 2)[mouth_vert_pair_idcs] # 6 x 2 x N x 3
mouth_conditioning = (mouth_vert_coords[:, 0] -
mouth_vert_coords[:, 1]).pow(2).sum(dim=-1).sqrt().permute(1, 0) # N x 6
# normalize mouth distances to range -1 ... 1 based on values obtained from philips sequence
mins = torch.tensor([[0.0072, 0.0238, 0.0338, 0.0409, 0.0344, 0.0221, 0.0037, 0.0070, 0.0069, 0.0033]],
device=mouth_conditioning.device)
maxs = torch.tensor([[0.0237, 0.0368, 0.0500, 0.0631, 0.0508, 0.0358, 0.0157, 0.0239, 0.0229, 0.0157]],
device=mouth_conditioning.device)
mouth_conditioning = (mouth_conditioning - mins) / (maxs - mins) * 2 - 1
# calculate nose rotation:
rot_global = Rotation.from_rotvec(full_pose[:, :3].detach().cpu().numpy())
rot_neck = Rotation.from_rotvec(full_pose[:, 3:6].detach().cpu().numpy())
rot_nose = rot_global * rot_neck
nose_condition = torch.tensor(rot_nose.as_rotvec(), device=mouth_conditioning.device,
dtype=mouth_conditioning.dtype)
mouth_conditioning = torch.cat((mouth_conditioning, nose_condition), dim=1)
ret_vals.append(mouth_conditioning)
if len(ret_vals) > 1:
return ret_vals
else:
return ret_vals[0]