diff --git a/blog/content/edition-2/posts/04-testing/index.md b/blog/content/edition-2/posts/04-testing/index.md index 3b0e501c3..d1770166a 100644 --- a/blog/content/edition-2/posts/04-testing/index.md +++ b/blog/content/edition-2/posts/04-testing/index.md @@ -174,18 +174,18 @@ The functionality of the `isa-debug-exit` device is very simple. When a `value` Instead of manually invoking the `in` and `out` assembly instructions, we use the abstractions provided by the [`x86_64`] crate. To add a dependency on that crate, we add it to the `dependencies` section in our `Cargo.toml`: -[`x86_64`]: https://docs.rs/x86_64/0.13.2/x86_64/ +[`x86_64`]: https://docs.rs/x86_64/0.14.2/x86_64/ ```toml # in Cargo.toml [dependencies] -x86_64 = "0.13.2" +x86_64 = "0.14.2" ``` Now we can use the [`Port`] type provided by the crate to create an `exit_qemu` function: -[`Port`]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/port/struct.Port.html +[`Port`]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/port/struct.Port.html ```rust // in src/main.rs diff --git a/blog/content/edition-2/posts/05-cpu-exceptions/index.md b/blog/content/edition-2/posts/05-cpu-exceptions/index.md index 5d68b59ce..d27dda947 100644 --- a/blog/content/edition-2/posts/05-cpu-exceptions/index.md +++ b/blog/content/edition-2/posts/05-cpu-exceptions/index.md @@ -84,7 +84,7 @@ Don't worry about steps 4 and 5 for now, we will learn about the global descript ## An IDT Type Instead of creating our own IDT type, we will use the [`InterruptDescriptorTable` struct] of the `x86_64` crate, which looks like this: -[`InterruptDescriptorTable` struct]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html +[`InterruptDescriptorTable` struct]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html ``` rust #[repr(C)] @@ -115,15 +115,15 @@ pub struct InterruptDescriptorTable { The fields have the type [`idt::Entry`], which is a struct that represents the fields of an IDT entry (see the table above). The type parameter `F` defines the expected handler function type. We see that some entries require a [`HandlerFunc`] and some entries require a [`HandlerFuncWithErrCode`]. The page fault even has its own special type: [`PageFaultHandlerFunc`]. -[`idt::Entry`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.Entry.html -[`HandlerFunc`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/type.HandlerFunc.html -[`HandlerFuncWithErrCode`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/type.HandlerFuncWithErrCode.html -[`PageFaultHandlerFunc`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/type.PageFaultHandlerFunc.html +[`idt::Entry`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.Entry.html +[`HandlerFunc`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/type.HandlerFunc.html +[`HandlerFuncWithErrCode`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/type.HandlerFuncWithErrCode.html +[`PageFaultHandlerFunc`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/type.PageFaultHandlerFunc.html Let's look at the `HandlerFunc` type first: ```rust -type HandlerFunc = extern "x86-interrupt" fn(_: &mut InterruptStackFrame); +type HandlerFunc = extern "x86-interrupt" fn(_: InterruptStackFrame); ``` It's a [type alias] for an `extern "x86-interrupt" fn` type. The `extern` keyword defines a function with a [foreign calling convention] and is often used to communicate with C code (`extern "C" fn`). But what is the `x86-interrupt` calling convention? @@ -195,7 +195,7 @@ So the _interrupt stack frame_ looks like this: In the `x86_64` crate, the interrupt stack frame is represented by the [`InterruptStackFrame`] struct. It is passed to interrupt handlers as `&mut` and can be used to retrieve additional information about the exception's cause. The struct contains no error code field, since only some few exceptions push an error code. These exceptions use the separate [`HandlerFuncWithErrCode`] function type, which has an additional `error_code` argument. -[`InterruptStackFrame`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.InterruptStackFrame.html +[`InterruptStackFrame`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.InterruptStackFrame.html ### Behind the Scenes The `x86-interrupt` calling convention is a powerful abstraction that hides almost all of the messy details of the exception handling process. However, sometimes it's useful to know what's happening behind the curtain. Here is a short overview of the things that the `x86-interrupt` calling convention takes care of: @@ -249,7 +249,7 @@ pub fn init_idt() { } extern "x86-interrupt" fn breakpoint_handler( - stack_frame: &mut InterruptStackFrame) + stack_frame: InterruptStackFrame) { println!("EXCEPTION: BREAKPOINT\n{:#?}", stack_frame); } @@ -263,7 +263,7 @@ When we try to compile it, the following error occurs: error[E0658]: x86-interrupt ABI is experimental and subject to change (see issue #40180) --> src/main.rs:53:1 | -53 | / extern "x86-interrupt" fn breakpoint_handler(stack_frame: &mut InterruptStackFrame) { +53 | / extern "x86-interrupt" fn breakpoint_handler(stack_frame: InterruptStackFrame) { 54 | | println!("EXCEPTION: BREAKPOINT\n{:#?}", stack_frame); 55 | | } | |_^ @@ -277,7 +277,7 @@ This error occurs because the `x86-interrupt` calling convention is still unstab In order that the CPU uses our new interrupt descriptor table, we need to load it using the [`lidt`] instruction. The `InterruptDescriptorTable` struct of the `x86_64` provides a [`load`][InterruptDescriptorTable::load] method function for that. Let's try to use it: [`lidt`]: https://www.felixcloutier.com/x86/lgdt:lidt -[InterruptDescriptorTable::load]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html#method.load +[InterruptDescriptorTable::load]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html#method.load ```rust // in src/interrupts.rs @@ -457,7 +457,7 @@ blog_os::interrupts::test_breakpoint_exception... [ok] The `x86-interrupt` calling convention and the [`InterruptDescriptorTable`] type made the exception handling process relatively straightforward and painless. If this was too much magic for you and you like to learn all the gory details of exception handling, we got you covered: Our [“Handling Exceptions with Naked Functions”] series shows how to handle exceptions without the `x86-interrupt` calling convention and also creates its own IDT type. Historically, these posts were the main exception handling posts before the `x86-interrupt` calling convention and the `x86_64` crate existed. Note that these posts are based on the [first edition] of this blog and might be out of date. [“Handling Exceptions with Naked Functions”]: @/edition-1/extra/naked-exceptions/_index.md -[`InterruptDescriptorTable`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html +[`InterruptDescriptorTable`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html [first edition]: @/edition-1/_index.md ## What's next? diff --git a/blog/content/edition-2/posts/06-double-faults/index.md b/blog/content/edition-2/posts/06-double-faults/index.md index bdf1a8331..a276837a6 100644 --- a/blog/content/edition-2/posts/06-double-faults/index.md +++ b/blog/content/edition-2/posts/06-double-faults/index.md @@ -81,7 +81,7 @@ lazy_static! { // new extern "x86-interrupt" fn double_fault_handler( - stack_frame: &mut InterruptStackFrame, _error_code: u64) -> ! + stack_frame: InterruptStackFrame, _error_code: u64) -> ! { panic!("EXCEPTION: DOUBLE FAULT\n{:#?}", stack_frame); } @@ -229,7 +229,7 @@ The _Privilege Stack Table_ is used by the CPU when the privilege level changes. ### Creating a TSS Let's create a new TSS that contains a separate double fault stack in its interrupt stack table. For that we need a TSS struct. Fortunately, the `x86_64` crate already contains a [`TaskStateSegment` struct] that we can use. -[`TaskStateSegment` struct]: https://docs.rs/x86_64/0.13.2/x86_64/structures/tss/struct.TaskStateSegment.html +[`TaskStateSegment` struct]: https://docs.rs/x86_64/0.14.2/x86_64/structures/tss/struct.TaskStateSegment.html We create the TSS in a new `gdt` module (the name will make sense later): @@ -375,8 +375,8 @@ pub fn init() { We reload the code segment register using [`set_cs`] and load the TSS using [`load_tss`]. The functions are marked as `unsafe`, so we need an `unsafe` block to invoke them. The reason is that it might be possible to break memory safety by loading invalid selectors. -[`set_cs`]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/segmentation/fn.set_cs.html -[`load_tss`]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/tables/fn.load_tss.html +[`set_cs`]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/segmentation/fn.set_cs.html +[`load_tss`]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/tables/fn.load_tss.html Now that we loaded a valid TSS and interrupt stack table, we can set the stack index for our double fault handler in the IDT: @@ -526,7 +526,7 @@ use blog_os::{exit_qemu, QemuExitCode, serial_println}; use x86_64::structures::idt::InterruptStackFrame; extern "x86-interrupt" fn test_double_fault_handler( - _stack_frame: &mut InterruptStackFrame, + _stack_frame: InterruptStackFrame, _error_code: u64, ) -> ! { serial_println!("[ok]"); diff --git a/blog/content/edition-2/posts/07-hardware-interrupts/index.md b/blog/content/edition-2/posts/07-hardware-interrupts/index.md index a54b53fc6..f9c8ae724 100644 --- a/blog/content/edition-2/posts/07-hardware-interrupts/index.md +++ b/blog/content/edition-2/posts/07-hardware-interrupts/index.md @@ -75,29 +75,29 @@ Each controller can be configured through two [I/O ports], one “command” por The default configuration of the PICs is not usable, because it sends interrupt vector numbers in the range 0–15 to the CPU. These numbers are already occupied by CPU exceptions, for example number 8 corresponds to a double fault. To fix this overlapping issue, we need to remap the PIC interrupts to different numbers. The actual range doesn't matter as long as it does not overlap with the exceptions, but typically the range 32–47 is chosen, because these are the first free numbers after the 32 exception slots. -The configuration happens by writing special values to the command and data ports of the PICs. Fortunately there is already a crate called [`pic8259_simple`], so we don't need to write the initialization sequence ourselves. In case you are interested how it works, check out [its source code][pic crate source], it's fairly small and well documented. +The configuration happens by writing special values to the command and data ports of the PICs. Fortunately there is already a crate called [`pic8259`], so we don't need to write the initialization sequence ourselves. In case you are interested how it works, check out [its source code][pic crate source], it's fairly small and well documented. -[pic crate source]: https://docs.rs/crate/pic8259_simple/0.2.0/source/src/lib.rs +[pic crate source]: https://docs.rs/crate/pic8259/0.10.0/source/src/lib.rs To add the crate as dependency, we add the following to our project: -[`pic8259_simple`]: https://docs.rs/pic8259_simple/0.2.0/pic8259_simple/ +[`pic8259`]: https://docs.rs/pic8259/0.10.0/pic8259/ ```toml # in Cargo.toml [dependencies] -pic8259_simple = "0.2.0" +pic8259 = "0.10.1" ``` The main abstraction provided by the crate is the [`ChainedPics`] struct that represents the primary/secondary PIC layout we saw above. It is designed to be used in the following way: -[`ChainedPics`]: https://docs.rs/pic8259_simple/0.2.0/pic8259_simple/struct.ChainedPics.html +[`ChainedPics`]: https://docs.rs/pic8259/0.10.1/pic8259/struct.ChainedPics.html ```rust // in src/interrupts.rs -use pic8259_simple::ChainedPics; +use pic8259::ChainedPics; use spin; pub const PIC_1_OFFSET: u8 = 32; @@ -125,7 +125,7 @@ pub fn init() { We use the [`initialize`] function to perform the PIC initialization. Like the `ChainedPics::new` function, this function is also unsafe because it can cause undefined behavior if the PIC is misconfigured. -[`initialize`]: https://docs.rs/pic8259_simple/0.2.0/pic8259_simple/struct.ChainedPics.html#method.initialize +[`initialize`]: https://docs.rs/pic8259/0.10.1/pic8259/struct.ChainedPics.html#method.initialize If all goes well we should continue to see the "It did not crash" message when executing `cargo run`. @@ -200,7 +200,7 @@ lazy_static! { } extern "x86-interrupt" fn timer_interrupt_handler( - _stack_frame: &mut InterruptStackFrame) + _stack_frame: InterruptStackFrame) { print!("."); } @@ -208,7 +208,7 @@ extern "x86-interrupt" fn timer_interrupt_handler( Our `timer_interrupt_handler` has the same signature as our exception handlers, because the CPU reacts identically to exceptions and external interrupts (the only difference is that some exceptions push an error code). The [`InterruptDescriptorTable`] struct implements the [`IndexMut`] trait, so we can access individual entries through array indexing syntax. -[`InterruptDescriptorTable`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html +[`InterruptDescriptorTable`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.InterruptDescriptorTable.html [`IndexMut`]: https://doc.rust-lang.org/core/ops/trait.IndexMut.html In our timer interrupt handler, we print a dot to the screen. As the timer interrupt happens periodically, we would expect to see a dot appearing on each timer tick. However, when we run it we see that only a single dot is printed: @@ -225,7 +225,7 @@ To send the EOI, we use our static `PICS` struct again: // in src/interrupts.rs extern "x86-interrupt" fn timer_interrupt_handler( - _stack_frame: &mut InterruptStackFrame) + _stack_frame: InterruptStackFrame) { print!("."); @@ -333,7 +333,7 @@ pub fn _print(args: fmt::Arguments) { The [`without_interrupts`] function takes a [closure] and executes it in an interrupt-free environment. We use it to ensure that no interrupt can occur as long as the `Mutex` is locked. When we run our kernel now we see that it keeps running without hanging. (We still don't notice any dots, but this is because they're scrolling by too fast. Try to slow down the printing, e.g. by putting a `for _ in 0..10000 {}` inside the loop.) -[`without_interrupts`]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/interrupts/fn.without_interrupts.html +[`without_interrupts`]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/interrupts/fn.without_interrupts.html [closure]: https://doc.rust-lang.org/book/ch13-01-closures.html We can apply the same change to our serial printing function to ensure that no deadlocks occur with it either: @@ -538,7 +538,7 @@ lazy_static! { } extern "x86-interrupt" fn keyboard_interrupt_handler( - _stack_frame: &mut InterruptStackFrame) + _stack_frame: InterruptStackFrame) { print!("k"); @@ -563,7 +563,7 @@ To find out _which_ key was pressed, we need to query the keyboard controller. W // in src/interrupts.rs extern "x86-interrupt" fn keyboard_interrupt_handler( - _stack_frame: &mut InterruptStackFrame) + _stack_frame: InterruptStackFrame) { use x86_64::instructions::port::Port; @@ -580,7 +580,7 @@ extern "x86-interrupt" fn keyboard_interrupt_handler( We use the [`Port`] type of the `x86_64` crate to read a byte from the keyboard's data port. This byte is called the [_scancode_] and is a number that represents the key press/release. We don't do anything with the scancode yet, we just print it to the screen: -[`Port`]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/port/struct.Port.html +[`Port`]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/port/struct.Port.html [_scancode_]: https://en.wikipedia.org/wiki/Scancode ![QEMU printing scancodes to the screen when keys are pressed](qemu-printing-scancodes.gif) @@ -604,7 +604,7 @@ To translate the scancodes to keys, we can use a match statement: // in src/interrupts.rs extern "x86-interrupt" fn keyboard_interrupt_handler( - _stack_frame: &mut InterruptStackFrame) + _stack_frame: InterruptStackFrame) { use x86_64::instructions::port::Port; @@ -663,7 +663,7 @@ Now we can use this crate to rewrite our `keyboard_interrupt_handler`: // in/src/interrupts.rs extern "x86-interrupt" fn keyboard_interrupt_handler( - _stack_frame: &mut InterruptStackFrame) + _stack_frame: InterruptStackFrame) { use pc_keyboard::{layouts, DecodedKey, HandleControl, Keyboard, ScancodeSet1}; use spin::Mutex; diff --git a/blog/content/edition-2/posts/08-paging-introduction/index.md b/blog/content/edition-2/posts/08-paging-introduction/index.md index 172dc176b..416c55dde 100644 --- a/blog/content/edition-2/posts/08-paging-introduction/index.md +++ b/blog/content/edition-2/posts/08-paging-introduction/index.md @@ -235,8 +235,8 @@ Let's take a closer look at the available flags: The `x86_64` crate provides types for [page tables] and their [entries], so we don't need to create these structures ourselves. -[page tables]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page_table/struct.PageTable.html -[entries]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page_table/struct.PageTableEntry.html +[page tables]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page_table/struct.PageTable.html +[entries]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page_table/struct.PageTableEntry.html ### The Translation Lookaside Buffer @@ -245,7 +245,7 @@ A 4-level page table makes the translation of virtual addresses expensive, becau Unlike the other CPU caches, the TLB is not fully transparent and does not update or remove translations when the contents of page tables change. This means that the kernel must manually update the TLB whenever it modifies a page table. To do this, there is a special CPU instruction called [`invlpg`] (“invalidate page”) that removes the translation for the specified page from the TLB, so that it is loaded again from the page table on the next access. The TLB can also be flushed completely by reloading the `CR3` register, which simulates an address space switch. The `x86_64` crate provides Rust functions for both variants in the [`tlb` module]. [`invlpg`]: https://www.felixcloutier.com/x86/INVLPG.html -[`tlb` module]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/tlb/index.html +[`tlb` module]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/tlb/index.html It is important to remember flushing the TLB on each page table modification because otherwise the CPU might keep using the old translation, which can lead to non-deterministic bugs that are very hard to debug. @@ -284,7 +284,7 @@ use x86_64::structures::idt::PageFaultErrorCode; use crate::hlt_loop; extern "x86-interrupt" fn page_fault_handler( - stack_frame: &mut InterruptStackFrame, + stack_frame: InterruptStackFrame, error_code: PageFaultErrorCode, ) { use x86_64::registers::control::Cr2; @@ -300,8 +300,8 @@ extern "x86-interrupt" fn page_fault_handler( The [`CR2`] register is automatically set by the CPU on a page fault and contains the accessed virtual address that caused the page fault. We use the [`Cr2::read`] function of the `x86_64` crate to read and print it. The [`PageFaultErrorCode`] type provides more information about the type of memory access that caused the page fault, for example whether it was caused by a read or write operation. For this reason we print it too. We can't continue execution without resolving the page fault, so we enter a [`hlt_loop`] at the end. [`CR2`]: https://en.wikipedia.org/wiki/Control_register#CR2 -[`Cr2::read`]: https://docs.rs/x86_64/0.13.2/x86_64/registers/control/struct.Cr2.html#method.read -[`PageFaultErrorCode`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.PageFaultErrorCode.html +[`Cr2::read`]: https://docs.rs/x86_64/0.14.2/x86_64/registers/control/struct.Cr2.html#method.read +[`PageFaultErrorCode`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.PageFaultErrorCode.html [LLVM bug]: https://github.com/rust-lang/rust/issues/57270 [`hlt_loop`]: @/edition-2/posts/07-hardware-interrupts/index.md#the-hlt-instruction @@ -335,7 +335,7 @@ When we run it, we see that our page fault handler is called: The `CR2` register indeed contains `0xdeadbeaf`, the address that we tried to access. The error code tells us through the [`CAUSED_BY_WRITE`] that the fault occurred while trying to perform a write operation. It tells us even more through the [bits that are _not_ set][`PageFaultErrorCode`]. For example, the fact that the `PROTECTION_VIOLATION` flag is not set means that the page fault occurred because the target page wasn't present. -[`CAUSED_BY_WRITE`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.PageFaultErrorCode.html#associatedconstant.CAUSED_BY_WRITE +[`CAUSED_BY_WRITE`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.PageFaultErrorCode.html#associatedconstant.CAUSED_BY_WRITE We see that the current instruction pointer is `0x2031b2`, so we know that this address points to a code page. Code pages are mapped read-only by the bootloader, so reading from this address works but writing causes a page fault. You can try this by changing the `0xdeadbeaf` pointer to `0x2031b2`: @@ -359,7 +359,7 @@ By commenting out the last line, we see that the read access works, but the writ We see that the _"read worked"_ message is printed, which indicates that the read operation did not cause any errors. However, instead of the _"write worked"_ message a page fault occurs. This time the [`PROTECTION_VIOLATION`] flag is set in addition to the [`CAUSED_BY_WRITE`] flag, which indicates that the page was present, but the operation was not allowed on it. In this case, writes to the page are not allowed since code pages are mapped as read-only. -[`PROTECTION_VIOLATION`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/idt/struct.PageFaultErrorCode.html#associatedconstant.PROTECTION_VIOLATION +[`PROTECTION_VIOLATION`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/idt/struct.PageFaultErrorCode.html#associatedconstant.PROTECTION_VIOLATION ### Accessing the Page Tables @@ -385,9 +385,9 @@ pub extern "C" fn _start() -> ! { The [`Cr3::read`] function of the `x86_64` returns the currently active level 4 page table from the `CR3` register. It returns a tuple of a [`PhysFrame`] and a [`Cr3Flags`] type. We are only interested in the frame, so we ignore the second element of the tuple. -[`Cr3::read`]: https://docs.rs/x86_64/0.13.2/x86_64/registers/control/struct.Cr3.html#method.read -[`PhysFrame`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/frame/struct.PhysFrame.html -[`Cr3Flags`]: https://docs.rs/x86_64/0.13.2/x86_64/registers/control/struct.Cr3Flags.html +[`Cr3::read`]: https://docs.rs/x86_64/0.14.2/x86_64/registers/control/struct.Cr3.html#method.read +[`PhysFrame`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/frame/struct.PhysFrame.html +[`Cr3Flags`]: https://docs.rs/x86_64/0.14.2/x86_64/registers/control/struct.Cr3Flags.html When we run it, we see the following output: @@ -397,7 +397,7 @@ Level 4 page table at: PhysAddr(0x1000) So the currently active level 4 page table is stored at address `0x1000` in _physical_ memory, as indicated by the [`PhysAddr`] wrapper type. The question now is: how can we access this table from our kernel? -[`PhysAddr`]: https://docs.rs/x86_64/0.13.2/x86_64/addr/struct.PhysAddr.html +[`PhysAddr`]: https://docs.rs/x86_64/0.14.2/x86_64/addr/struct.PhysAddr.html Accessing physical memory directly is not possible when paging is active, since programs could easily circumvent memory protection and access memory of other programs otherwise. So the only way to access the table is through some virtual page that is mapped to the physical frame at address `0x1000`. This problem of creating mappings for page table frames is a general problem, since the kernel needs to access the page tables regularly, for example when allocating a stack for a new thread. diff --git a/blog/content/edition-2/posts/09-paging-implementation/index.md b/blog/content/edition-2/posts/09-paging-implementation/index.md index 2f5fd7b77..572b7042b 100644 --- a/blog/content/edition-2/posts/09-paging-implementation/index.md +++ b/blog/content/edition-2/posts/09-paging-implementation/index.md @@ -219,7 +219,7 @@ The above code assumes that the last level 4 entry with index `0o777` (511) is r Alternatively to performing the bitwise operations by hand, you can use the [`RecursivePageTable`] type of the `x86_64` crate, which provides safe abstractions for various page table operations. For example, the code below shows how to translate a virtual address to its mapped physical address: -[`RecursivePageTable`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.RecursivePageTable.html +[`RecursivePageTable`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.RecursivePageTable.html ```rust // in src/memory.rs @@ -437,7 +437,7 @@ fn kernel_main(boot_info: &'static BootInfo) -> ! { First, we convert the `physical_memory_offset` of the `BootInfo` struct to a [`VirtAddr`] and pass it to the `active_level_4_table` function. We then use the `iter` function to iterate over the page table entries and the [`enumerate`] combinator to additionally add an index `i` to each element. We only print non-empty entries because all 512 entries wouldn't fit on the screen. -[`VirtAddr`]: https://docs.rs/x86_64/0.13.2/x86_64/addr/struct.VirtAddr.html +[`VirtAddr`]: https://docs.rs/x86_64/0.14.2/x86_64/addr/struct.VirtAddr.html [`enumerate`]: https://doc.rust-lang.org/core/iter/trait.Iterator.html#method.enumerate When we run it, we see the following output: @@ -550,7 +550,7 @@ The `VirtAddr` struct already provides methods to compute the indexes into the p Inside the loop, we again use the `physical_memory_offset` to convert the frame into a page table reference. We then read the entry of the current page table and use the [`PageTableEntry::frame`] function to retrieve the mapped frame. If the entry is not mapped to a frame we return `None`. If the entry maps a huge 2MiB or 1GiB page we panic for now. -[`PageTableEntry::frame`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page_table/struct.PageTableEntry.html#method.frame +[`PageTableEntry::frame`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page_table/struct.PageTableEntry.html#method.frame Let's test our translation function by translating some addresses: @@ -605,18 +605,18 @@ The base of the abstraction are two traits that define various page table mappin - The [`Mapper`] trait is generic over the page size and provides functions that operate on pages. Examples are [`translate_page`], which translates a given page to a frame of the same size, and [`map_to`], which creates a new mapping in the page table. - The [`Translate`] trait provides functions that work with multiple page sizes such as [`translate_addr`] or the general [`translate`]. -[`Mapper`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Mapper.html -[`translate_page`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Mapper.html#tymethod.translate_page -[`map_to`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Mapper.html#method.map_to -[`Translate`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Translate.html -[`translate_addr`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Translate.html#method.translate_addr -[`translate`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Translate.html#tymethod.translate +[`Mapper`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Mapper.html +[`translate_page`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Mapper.html#tymethod.translate_page +[`map_to`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Mapper.html#method.map_to +[`Translate`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Translate.html +[`translate_addr`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Translate.html#method.translate_addr +[`translate`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Translate.html#tymethod.translate The traits only define the interface, they don't provide any implementation. The `x86_64` crate currently provides three types that implement the traits with different requirements. The [`OffsetPageTable`] type assumes that the complete physical memory is mapped to the virtual address space at some offset. The [`MappedPageTable`] is a bit more flexible: It only requires that each page table frame is mapped to the virtual address space at a calculable address. Finally, the [`RecursivePageTable`] type can be used to access page table frames through [recursive page tables](#recursive-page-tables). -[`OffsetPageTable`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.OffsetPageTable.html -[`MappedPageTable`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.MappedPageTable.html -[`RecursivePageTable`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.RecursivePageTable.html +[`OffsetPageTable`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.OffsetPageTable.html +[`MappedPageTable`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.MappedPageTable.html +[`RecursivePageTable`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.RecursivePageTable.html In our case, the bootloader maps the complete physical memory at a virtual address specfied by the `physical_memory_offset` variable, so we can use the `OffsetPageTable` type. To initialize it, we create a new `init` function in our `memory` module: @@ -642,7 +642,7 @@ unsafe fn active_level_4_table(physical_memory_offset: VirtAddr) The function takes the `physical_memory_offset` as an argument and returns a new `OffsetPageTable` instance with a `'static` lifetime. This means that the instance stays valid for the complete runtime of our kernel. In the function body, we first call the `active_level_4_table` function to retrieve a mutable reference to the level 4 page table. We then invoke the [`OffsetPageTable::new`] function with this reference. As the second parameter, the `new` function expects the virtual address at which the mapping of the physical memory starts, which is given in the `physical_memory_offset` variable. -[`OffsetPageTable::new`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.OffsetPageTable.html#method.new +[`OffsetPageTable::new`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.OffsetPageTable.html#method.new The `active_level_4_table` function should be only called from the `init` function from now on because it can easily lead to aliased mutable references when called multiple times, which can cause undefined behavior. For this reason, we make the function private by removing the `pub` specifier. @@ -693,8 +693,8 @@ Until now we only looked at the page tables without modifying anything. Let's ch We will use the [`map_to`] function of the [`Mapper`] trait for our implementation, so let's take a look at that function first. The documentation tells us that it takes four arguments: the page that we want to map, the frame that the page should be mapped to, a set of flags for the page table entry, and a `frame_allocator`. The frame allocator is needed because mapping the given page might require creating additional page tables, which need unused frames as backing storage. -[`map_to`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/trait.Mapper.html#tymethod.map_to -[`Mapper`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/trait.Mapper.html +[`map_to`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/trait.Mapper.html#tymethod.map_to +[`Mapper`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/trait.Mapper.html #### A `create_example_mapping` Function @@ -733,8 +733,8 @@ In addition to the `page` that should be mapped, the function expects a mutable [impl-trait-arg]: https://doc.rust-lang.org/book/ch10-02-traits.html#traits-as-parameters [generic]: https://doc.rust-lang.org/book/ch10-00-generics.html -[`FrameAllocator`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/trait.FrameAllocator.html -[`PageSize`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page/trait.PageSize.html +[`FrameAllocator`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/trait.FrameAllocator.html +[`PageSize`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page/trait.PageSize.html The [`map_to`] method is unsafe because the caller must ensure that the frame is not already in use. The reason for this is that mapping the same frame twice could result in undefined behavior, for example when two different `&mut` references point to the same physical memory location. In our case, we reuse the VGA text buffer frame, which is already mapped, so we break the required condition. However, the `create_example_mapping` function is only a temporary testing function and will be removed after this post, so it is ok. To remind us of the unsafety, we put a `FIXME` comment on the line. @@ -746,8 +746,8 @@ The [`map_to`] function can fail, so it returns a [`Result`]. Since this is just [`Result`]: https://doc.rust-lang.org/core/result/enum.Result.html [`expect`]: https://doc.rust-lang.org/core/result/enum.Result.html#method.expect -[`MapperFlush`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.MapperFlush.html -[`flush`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.MapperFlush.html#method.flush +[`MapperFlush`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.MapperFlush.html +[`flush`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.MapperFlush.html#method.flush [must_use]: https://doc.rust-lang.org/std/result/#results-must-be-used #### A dummy `FrameAllocator` diff --git a/blog/content/edition-2/posts/10-heap-allocation/index.md b/blog/content/edition-2/posts/10-heap-allocation/index.md index 5e1e7b99e..8a290fef6 100644 --- a/blog/content/edition-2/posts/10-heap-allocation/index.md +++ b/blog/content/edition-2/posts/10-heap-allocation/index.md @@ -445,12 +445,12 @@ pub fn init_heap( The function takes mutable references to a [`Mapper`] and a [`FrameAllocator`] instance, both limited to 4KiB pages by using [`Size4KiB`] as generic parameter. The return value of the function is a [`Result`] with the unit type `()` as success variant and a [`MapToError`] as error variant, which is the error type returned by the [`Mapper::map_to`] method. Reusing the error type makes sense here because the `map_to` method is the main source of errors in this function. -[`Mapper`]:https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Mapper.html -[`FrameAllocator`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/trait.FrameAllocator.html -[`Size4KiB`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page/enum.Size4KiB.html +[`Mapper`]:https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Mapper.html +[`FrameAllocator`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/trait.FrameAllocator.html +[`Size4KiB`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page/enum.Size4KiB.html [`Result`]: https://doc.rust-lang.org/core/result/enum.Result.html -[`MapToError`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/enum.MapToError.html -[`Mapper::map_to`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/trait.Mapper.html#method.map_to +[`MapToError`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/enum.MapToError.html +[`Mapper::map_to`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/trait.Mapper.html#method.map_to The implementation can be broken down into two parts: @@ -464,18 +464,18 @@ The implementation can be broken down into two parts: - We use the [`Mapper::map_to`] method for creating the mapping in the active page table. The method can fail, therefore we use the [question mark operator] again to forward the error to the caller. On success, the method returns a [`MapperFlush`] instance that we can use to update the [_translation lookaside buffer_] using the [`flush`] method. -[`VirtAddr`]: https://docs.rs/x86_64/0.13.2/x86_64/addr/struct.VirtAddr.html -[`Page`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page/struct.Page.html -[`containing_address`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page/struct.Page.html#method.containing_address -[`Page::range_inclusive`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/page/struct.Page.html#method.range_inclusive -[`FrameAllocator::allocate_frame`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/trait.FrameAllocator.html#tymethod.allocate_frame +[`VirtAddr`]: https://docs.rs/x86_64/0.14.2/x86_64/addr/struct.VirtAddr.html +[`Page`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page/struct.Page.html +[`containing_address`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page/struct.Page.html#method.containing_address +[`Page::range_inclusive`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/page/struct.Page.html#method.range_inclusive +[`FrameAllocator::allocate_frame`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/trait.FrameAllocator.html#tymethod.allocate_frame [`None`]: https://doc.rust-lang.org/core/option/enum.Option.html#variant.None -[`MapToError::FrameAllocationFailed`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/enum.MapToError.html#variant.FrameAllocationFailed +[`MapToError::FrameAllocationFailed`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/enum.MapToError.html#variant.FrameAllocationFailed [`Option::ok_or`]: https://doc.rust-lang.org/core/option/enum.Option.html#method.ok_or [question mark operator]: https://doc.rust-lang.org/edition-guide/rust-2018/error-handling-and-panics/the-question-mark-operator-for-easier-error-handling.html -[`MapperFlush`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.MapperFlush.html +[`MapperFlush`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.MapperFlush.html [_translation lookaside buffer_]: @/edition-2/posts/08-paging-introduction/index.md#the-translation-lookaside-buffer -[`flush`]: https://docs.rs/x86_64/0.13.2/x86_64/structures/paging/mapper/struct.MapperFlush.html#method.flush +[`flush`]: https://docs.rs/x86_64/0.14.2/x86_64/structures/paging/mapper/struct.MapperFlush.html#method.flush The final step is to call this function from our `kernel_main`: @@ -528,7 +528,7 @@ To use the crate, we first need to add a dependency on it in our `Cargo.toml`: # in Cargo.toml [dependencies] -linked_list_allocator = "0.8.0" +linked_list_allocator = "0.9.0" ``` Then we can replace our dummy allocator with the allocator provided by the crate: @@ -548,7 +548,7 @@ The struct is named `LockedHeap` because it uses the [`spinning_top::Spinlock`] Setting the `LockedHeap` as global allocator is not enough. The reason is that we use the [`empty`] constructor function, which creates an allocator without any backing memory. Like our dummy allocator, it always returns an error on `alloc`. To fix this, we need to initialize the allocator after creating the heap: -[`empty`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.LockedHeap.html#method.empty +[`empty`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.LockedHeap.html#method.empty ```rust // in src/allocator.rs @@ -571,8 +571,8 @@ pub fn init_heap( We use the [`lock`] method on the inner spinlock of the `LockedHeap` type to get an exclusive reference to the wrapped [`Heap`] instance, on which we then call the [`init`] method with the heap bounds as arguments. It is important that we initialize the heap _after_ mapping the heap pages, since the [`init`] function already tries to write to the heap memory. [`lock`]: https://docs.rs/lock_api/0.3.3/lock_api/struct.Mutex.html#method.lock -[`Heap`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.Heap.html -[`init`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.Heap.html#method.init +[`Heap`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html +[`init`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.init After initializing the heap, we can now use all allocation and collection types of the built-in [`alloc`] crate without error: diff --git a/blog/content/edition-2/posts/11-allocator-designs/index.md b/blog/content/edition-2/posts/11-allocator-designs/index.md index 81bc5c96b..131a3da8d 100644 --- a/blog/content/edition-2/posts/11-allocator-designs/index.md +++ b/blog/content/edition-2/posts/11-allocator-designs/index.md @@ -963,13 +963,13 @@ impl FixedSizeBlockAllocator { The `new` function just initializes the `list_heads` array with empty nodes and creates an [`empty`] linked list allocator as `fallback_allocator`. The `EMPTY` constant is needed because to tell the Rust compiler that we want to initialize the array with a constant value. Initializing the array directly as `[None; BLOCK_SIZES.len()]` does not work because then the compiler requires that `Option<&'static mut ListNode>` implements the `Copy` trait, which is does not. This is a current limitation of the Rust compiler, which might go away in the future. -[`empty`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.Heap.html#method.empty +[`empty`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.empty If you haven't done so already for the `LinkedListAllocator` implementation, you also need to add **`#![feature(const_mut_refs)]`** to the beginning of your `lib.rs`. The reason is that any use of mutable reference types in const functions is still unstable, including the `Option<&'static mut ListNode>` array element type of the `list_heads` field (even if we set it to `None`). The unsafe `init` function only calls the [`init`] function of the `fallback_allocator` without doing any additional initialization of the `list_heads` array. Instead, we will initialize the lists lazily on `alloc` and `dealloc` calls. -[`init`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.Heap.html#method.init +[`init`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.init For convenience, we also create a private `fallback_alloc` method that allocates using the `fallback_allocator`: @@ -992,9 +992,9 @@ impl FixedSizeBlockAllocator { Since the [`Heap`] type of the `linked_list_allocator` crate does not implement [`GlobalAlloc`] (as it's [not possible without locking]). Instead, it provides an [`allocate_first_fit`] method that has a slightly different interface. Instead of returning a `*mut u8` and using a null pointer to signal an error, it returns a `Result, ()>`. The [`NonNull`] type is an abstraction for a raw pointer that is guaranteed to be not the null pointer. By mapping the `Ok` case to the [`NonNull::as_ptr`] method and the `Err` case to a null pointer, we can easily translate this back to a `*mut u8` type. -[`Heap`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.Heap.html +[`Heap`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html [not possible without locking]: #globalalloc-and-mutability -[`allocate_first_fit`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.Heap.html#method.allocate_first_fit +[`allocate_first_fit`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.allocate_first_fit [`NonNull`]: https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html [`NonNull::as_ptr`]: https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html#method.as_ptr @@ -1124,7 +1124,7 @@ unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) { Like in `alloc`, we first use the `lock` method to get a mutable allocator reference and then the `list_index` function to get the block list corresponding to the given `Layout`. If the index is `None`, no fitting block size exists in `BLOCK_SIZES`, which indicates that the allocation was created by the fallback allocator. Therefore we use its [`deallocate`][`Heap::deallocate`] to free the memory again. The method expects a [`NonNull`] instead of a `*mut u8`, so we need to convert the pointer first. (The `unwrap` call only fails when the pointer is null, which should never happen when the compiler calls `dealloc`.) -[`Heap::deallocate`]: https://docs.rs/linked_list_allocator/0.8.0/linked_list_allocator/struct.Heap.html#method.deallocate +[`Heap::deallocate`]: https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.deallocate If `list_index` returns a block index, we need to add the freed memory block to the list. For that, we first create a new `ListNode` that points to the current list head (by using [`Option::take`] again). Before we write the new node into the freed memory block, we first assert that the current block size specified by `index` has the required size and alignment for storing a `ListNode`. Then we perform the write by converting the given `*mut u8` pointer to a `*mut ListNode` pointer and then calling the unsafe [`write`][`pointer::write`] method on it. The last step is to set the head pointer of the list, which is currently `None` since we called `take` on it, to our newly written `ListNode`. For that we convert the raw `new_node_ptr` to a mutable reference. diff --git a/blog/content/edition-2/posts/12-async-await/index.md b/blog/content/edition-2/posts/12-async-await/index.md index 9cd1bbc1d..de390f0a2 100644 --- a/blog/content/edition-2/posts/12-async-await/index.md +++ b/blog/content/edition-2/posts/12-async-await/index.md @@ -1136,7 +1136,7 @@ To call the `add_scancode` function on keyboard interrupts, we update our `keybo // in src/interrupts.rs extern "x86-interrupt" fn keyboard_interrupt_handler( - _stack_frame: &mut InterruptStackFrame + _stack_frame: InterruptStackFrame ) { use x86_64::instructions::port::Port; @@ -1744,8 +1744,8 @@ impl Executor { Since we call `sleep_if_idle` directly after `run_ready_tasks`, which loops until the `task_queue` becomes empty, checking the queue again might seem unnecessary. However, a hardware interrupt might occur directly after `run_ready_tasks` returns, so there might be a new task in the queue at the time the `sleep_if_idle` function is called. Only if the queue is still empty, we put the CPU to sleep by executing the `hlt` instruction through the [`instructions::hlt`] wrapper function provided by the [`x86_64`] crate. -[`instructions::hlt`]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/fn.hlt.html -[`x86_64`]: https://docs.rs/x86_64/0.13.2/x86_64/index.html +[`instructions::hlt`]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/fn.hlt.html +[`x86_64`]: https://docs.rs/x86_64/0.14.2/x86_64/index.html Unfortunately, there is still a subtle race condition in this implementation. Since interrupts are asynchronous and can happen at any time, it is possible that an interrupt happens right between the `is_empty` check and the call to `hlt`: @@ -1760,7 +1760,7 @@ In case this interrupt pushes to the `task_queue`, we put the CPU to sleep even The answer is to disable interrupts on the CPU before the check and atomically enable them again together with the `hlt` instruction. This way, all interrupts that happen in between are delayed after the `hlt` instruction so that no wake-ups are missed. To implement this approach, we can use the [`interrupts::enable_and_hlt`][`enable_and_hlt`] function provided by the [`x86_64`] crate. -[`enable_and_hlt`]: https://docs.rs/x86_64/0.13.2/x86_64/instructions/interrupts/fn.enable_and_hlt.html +[`enable_and_hlt`]: https://docs.rs/x86_64/0.14.2/x86_64/instructions/interrupts/fn.enable_and_hlt.html The updated implementation of our `sleep_if_idle` function looks like this: