-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathInstanceAnalysis.py
460 lines (414 loc) · 18.2 KB
/
InstanceAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import LRP2E
import random
import requests
import demjson
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
import os
import copy
import json
import time
import traceback
import pandas as pd
import csv
import numpy as np
import key
import networkx as nx
random.seed(1)
temp_li = ['平武县', '广元市', '青川县']
city_li = ['汶川县', '茂县', '北川羌族自治县', '安县', '平武县', '绵竹市', '什邡市', '都江堰市', '彭州', '青川县',
'理县', '江油市', '广元市', '绵阳市', '德阳市']
depot_li = ['成都站', '双流县']
satellite_loc = {'A': [104.7958663, 30.98789618], 'B': [105.15353347, 31.08040717], 'C': [105.82059708, 30.9315482],
'D': [105.89429873, 30.00876652], 'E': [106.55353126, 31.57856261]}
satellite_loc['E'] = [103.55353126, 30.57856261]
li = [str(satellite_loc[key][1]) + ',' + str(satellite_loc[key][0]) for key in satellite_loc]
# city_li.extend(li)
depot_loc = {'成都站': [104.07337041, 30.69681133], '双流县': [103.923651, 30.574474]}
li2 = [str(depot_loc[key][1]) + ',' + str(depot_loc[key][0]) for key in depot_loc]
print(city_li)
def a_map_location(city, a_map_key=key.a_map_key):
r = requests.get('http://restapi.amap.com/v3/geocode/geo?address={0}&output=JSON&key={1}'.format(city, a_map_key))
json_data = r.text
text = demjson.decode(json_data)
try:
location = text['geocodes'][0]['location']
location = location.split(',', 1)
location = [float(a) for a in location]
return (location)
except:
return ('erro')
def google_map_location(city, google_map_key=key.google_map_key):
url = 'https://maps.googleapis.com/maps/api/geocode/json?address={}&key={}'.format(city, google_map_key)
r = requests.get(url)
json_data = r.text
text = demjson.decode(json_data)
try:
location = text['results'][0]['geometry']['location']
location = [float(location['lng']), float(location['lat'])]
return (location)
except:
return ('erro')
def google_map_draw(google_map_key=key.google_map_key):
# center = '31.0691798,103.89736454'
# center = '31.55819106,103.92717715'
size = '640x480'
maptype = 'terrain' # 'hybrid' # 'satellite' # 'terrain'
markers = 'size:small%7Ccolor:red%7Clabel:.%7C' + '%7C'.join(city_li)
markers2 = 'size:small%7Ccolor:blue%7Clabel:.%7C' + '%7C'.join(li)
markers3 = 'size:mid%7Ccolor:gray%7Clabel:.%7C' + '%7C'.join(li2)
print(markers)
url = 'https://maps.googleapis.com/maps/api/staticmap?' \
'size={0}' \
'&scale=2' \
'&maptype={1}' \
'&format=png32' \
'&markers={3}&markers={4}&markers={5}' \
'&key={2}' \
.format(size, maptype, google_map_key, markers, markers2, markers3)
r = requests.get(url)
file_name = 'picture_{}.png'.format(maptype)
with open(file_name, 'wb') as file:
file.write(r.content)
print(file_name, 'is downloaded.')
# google_map_draw()
# depot_loc = {depot: google_map_location(depot) for depot in depot_li}
# city_loc = {city: google_map_location(city) for city in city_li}
city_loc = {'汶川县': [103.590386, 31.476822], '茂县': [103.853522, 31.681154], '北川羌族自治县': [104.46797, 31.617202],
'安县': [104.567187, 31.534886], '平武县': [104.555583, 32.409675], '绵竹市': [104.22075, 31.338077],
'什邡市': [104.167501, 31.12678], '都江堰市': [103.646912, 30.988434], '彭州': [103.958014, 30.990108],
'青川县': [105.238842, 32.575484], '理县': [103.166852, 31.436473], '江油市': [104.745823, 31.778022],
'广元市': [105.843357, 32.435435], '绵阳市': [104.679004, 31.46746], '德阳市': [104.397894, 31.126855]}
depot_loc = {'成都站': [104.07337041, 30.69681133], '双流县': [103.923651, 30.574474]}
satellite_loc = {'A': [104.7958663, 30.98789618], 'B': [105.15353347, 31.08040717], 'C': [105.82059708, 30.9315482],
'D': [105.89429873, 30.00876652], 'E': [106.55353126, 31.57856261]}
satellite_loc['E'] = [103.55353126, 30.57856261]
DEPOT_NUM, SATELLITE_NUM, CUSTOMER_NUM = len(depot_loc), len(satellite_loc), len(city_loc)
SATELLITE_CAP = float("inf")
VEHICLE1_NUM, VEHICLE2_NUM = None, None
VEHICLE1_CAP, VEHICLE2_CAP = None, None
DEPOT = {i: [[None, None], None] for i in range(DEPOT_NUM)}
SATELLITE = {i: [[None, None], float("inf")] for i in range(max(DEPOT) + 1, max(DEPOT) + 1 + SATELLITE_NUM)}
CUSTOMER = {i: [[None, None], random.randrange(100, 1000)] for i in
range(max(SATELLITE) + 1, max(SATELLITE) + 1 + CUSTOMER_NUM)}
id_city_dic = {}
for i, city in zip([i for i in CUSTOMER], [i for i in city_loc]):
# print('{},{}'.format(i, city))
CUSTOMER[i][0] = city_loc[city]
id_city_dic[i] = city
for i, city in zip([i for i in SATELLITE], [i for i in satellite_loc]):
# print('{},{}'.format(i, city))
SATELLITE[i][0] = satellite_loc[city]
id_city_dic[i] = city
for i, city in zip([i for i in DEPOT], [i for i in depot_loc]):
# print('{},{}'.format(i, city))
DEPOT[i][0] = depot_loc[city]
id_city_dic[i] = city
INSTANCE = {'depot': DEPOT, 'satellite': SATELLITE, 'customer': CUSTOMER,
'vehicle1_num': VEHICLE1_NUM, 'vehicle2_num': VEHICLE2_NUM,
'vehicle1_cap': VEHICLE1_CAP, 'vehicle2_cap': VEHICLE2_CAP,
'satellite_cap': float("inf"), }
parameters = {'f': 0.5, 'pop_size': 500, 'offspring_size': 300, 'archive_size': 400, 'k': 300, 'mutt_prob': 0.3,
'iter_times': 100}
def make_instance():
ratio_li = [[5, 5], [6, 4], [7, 3], [8, 2], [9, 1]]
for ratio in ratio_li:
name = '_'.join([str(a) for a in ratio])
ins = copy.deepcopy(INSTANCE)
cus_dic = ins['customer']
for cus in cus_dic:
cus_dic[cus][1] = [ratio[0] * cus_dic[cus][1] / 10, ratio[1] * cus_dic[cus][1] / 10]
depot_dic = ins['depot']
for depot in depot_dic:
depot_dic[depot][1] = sum(cus_dic[key][1][depot] for key in cus_dic) * 0.8
ins['vehicle1_num'], ins['vehicle2_num'] = 4, 10
ins['vehicle1_cap'], ins['vehicle2_cap'] = 6000, 2000
ins['name'] = name
json_data = json.dumps(ins, sort_keys=True, indent=2, separators=(',', ':'))
with open('./ins_analysis_data_/{}.json'.format(name), 'wt') as f:
f.write(json_data)
def load_instance_json():
path = './ins_analysis_data_/'
files = os.listdir(path)
files = sorted(files)
files = [name for name in files if not name[0] == '.']
for file in files:
file_path = path + file
with open(file_path, 'r') as f:
instance = json.load(f)
for s in ['depot', 'satellite', 'customer']:
instance[s] = {int(key): instance[s][key] for key in instance[s]}
yield (instance)
def run(ins):
PARAMETERS = {'f': 0.5, 'pop_size': 500, 'offspring_size': 300, 'archive_size': 400, 'k': 300, 'mutt_prob': 0.3,
'iter_times': 100}
print('==' * 40)
print('Solving the instance:', ins['name'])
t1 = time.clock()
res = LRP2E.main(ins, PARAMETERS, 0)
t2 = time.clock()
res.append(t2 - t1)
print('time consuming:', t2 - t1)
json_data = json.dumps(res, sort_keys=True, indent=2, separators=(',', ':'))
with open('./ins_res_stand_/{}.json'.format(ins['name']), 'wt') as f:
f.write(json_data)
def sc_send(title, content='', key=key.sc_key):
url = 'http://sc.ftqq.com/' + key + '.send?text=' + title + '&desp=' + content
r = requests.get(url)
if r.status_code == 200:
return ('OK')
else:
return ('Opps')
def main():
ins_name = 'BUG'
try:
for ins in load_instance_json():
print(ins)
t1 = time.clock()
ins_name = ins['name']
run(ins)
t2 = time.clock()
sc_send('{}运行完毕'.format(ins_name), str((t2 - t1)) + '秒')
except:
title = ins_name
content = traceback.format_exc()
# sc_send(title, content)
def read_res(separate):
if separate:
path = './ins_res_stand_separate_/'
else:
path = './ins_res_stand_/'
files = os.listdir(path)
files = sorted(files, key=lambda file_name: file_name)
files = [name for name in files if not name[0] == '.']
for file in files:
file_path = path + file
with open(file_path, 'r') as f:
res = json.load(f)
yield (file, res)
# def write_res_analysis_csv():
# headers = ['instance_name', 'non_dominated_solution_num', 'time_consuming',
# 'min_obj1', 'mean_obj1', 'median_obj1', 'max_obj1',
# 'min_obj2', 'mean_obj2', 'median_obj2', 'max_obj2',
# 'min_obj3', 'mean_obj3', 'median_obj3', 'max_obj3',
# 'evaluation1', 'evaluation2', 'evaluation3']
# rows = []
# for ins_name, res_li in read_res():
# obj_values_frame = []
# for res in res_li[:-1]:
# obj_values = res[3]
# obj_values_frame.append(obj_values)
# data_frame = pd.DataFrame(obj_values_frame)
# d = data_frame.describe()
# row = (ins_name[:-5], len(res_li), res_li[-1],
# d[0]['min'], d[0]['mean'], d[0]['50%'], d[0]['max'],
# d[1]['min'], d[1]['mean'], d[1]['50%'], d[1]['max'],
# d[2]['min'], d[2]['mean'], d[2]['50%'], d[2]['max'])
# rows.append(row)
#
# with open('ins_res_analysis.csv', 'w') as f:
# f_csv = csv.writer(f)
# f_csv.writerow(headers)
# f_csv.writerows(rows)
def draw_boxplot(obj, title, file_name, ylabel, notch, showfliers, showmeans, meanline): # title file_name y_label
meanlineprops = dict(linestyle='-', linewidth=1, color='red')
medianprops = dict(linestyle='-', linewidth=2, color='black')
whiskerprops = dict(linestyle='--')
flierprops = dict(marker='x', markerfacecolor='k', markersize=5, linestyle='none')
meanprops = dict(marker='d', markeredgecolor='r', markerfacecolor='red', markersize=3)
labels = ['5:5', '5:5', '6:4', '6:4', '7:3', '7:3', '8:2', '8:2', '9:1', '9:1']
fig2, ax = plt.subplots(nrows=1, ncols=1)
ax.set_title(title)
# plt.plot([1, 3, 5, 7, 9], [np.mean(obj[i]) for i in range(len(obj)) if i % 2 == 0], color='k')
# plt.plot([2, 4, 6, 8, 10], [np.mean(obj[i]) for i in range(len(obj)) if i % 2 != 0], color='k')
bplot = ax.boxplot(obj, notch=notch, medianprops=medianprops, widths=0.45, showfliers=showfliers, flierprops=flierprops,
patch_artist=1,
whiskerprops=whiskerprops, meanprops=meanlineprops, showmeans=showmeans, meanline=meanline)
colors = ['lightgray', 'white'] * 5
for patch, color in zip(bplot['boxes'], colors):
patch.set_facecolor(color)
ax.set_xlabel('p1 : p2')
ax.set_ylabel(ylabel)
plt.setp(ax, xticks=[i + 1 for i in range(len(obj))], xticklabels=labels)
plt.savefig(file_name, bbox_inches='tight', transparent=True, pad_inches=0.1)
plt.show()
def obj_boxplot(notch=1, showfliers=1, showmeans=1, meanline=1):
for obj_indx in range(3):
obj = []
for i in [0, 1]:
for file_name, res_li in read_res(i):
li = []
if obj_indx != 1:
for res in res_li[:-1]:
li.append(abs(res[3][obj_indx]))
else:
for res in res_li[:-1]:
li.append(abs(res[3][obj_indx]) / (len(depot_loc) * len(city_loc)))
obj.append(li)
temp_li = []
for i in range(0, 5):
temp_li.append(obj[i])
temp_li.append(obj[i + 5])
obj = temp_li[:]
title = 'F{}'.format(str(obj_indx + 1))
file_name = '{}.pdf'.format(str(obj_indx + 1))
ylabel = 'F{} value'.format(str(obj_indx + 1))
draw_boxplot(obj, title, file_name, ylabel,
notch=notch, showfliers=showfliers, showmeans=showmeans, meanline=meanline)
def num_boxplot(notch=0, showfliers=0, showmeans=0, meanline=0):
a = [('S', 'S.pdf', '|S|'), ('U', 'U.pdf', '|U|'), ('V', 'V.pdf', '|V|')]
for j, triple in enumerate(a):
if j == 0:
obj = []
for i in [0, 1]:
for file_name, res_li in read_res(i):
li = []
for res in res_li[:-1]:
u_num = len([key for key in res[2]])
li.append(u_num)
obj.append(li)
elif j == 1 or j == 2:
obj = []
for i in [0, 1]:
for file_name, res_li in read_res(i):
li = []
for res in res_li[:-1]:
u_num = 0
for key in res[j]:
u_num += len(res[j][key])
li.append(u_num)
obj.append(li)
temp_li = []
for i in range(0, 5):
temp_li.append(obj[i])
temp_li.append(obj[i + 5])
obj = temp_li[:]
title, file_name, ylabel = triple
draw_boxplot(obj, title, file_name, ylabel,
notch=notch, showfliers=showfliers, showmeans=showmeans, meanline=meanline)
# obj = []
# for i in [0, 1]:
# for file_name, res_li in read_res(i):
# li = []
# for res in res_li[:-1]:
# u_num = 0
# # u_num = len([key for key in res[2]])
# for key in res[2]:
# u_num += len(res[2][key])
# li.append(u_num)
# obj.append(li)
# temp_li = []
# for i in range(0, 5):
# temp_li.append(obj[i])
# temp_li.append(obj[i + 5])
# obj = temp_li[:]
# title = 'satellite'
# file_name = 'satellite.pdf'
# ylabel = 'used satellite'
# draw_boxplot(obj, title, file_name, ylabel,
# notch=notch, showfliers=showfliers, showmeans=showmeans, meanline=meanline)
def scatter_ins():
for ins in load_instance_json():
# print(ins['satellite'])
customer_x = [ins['customer'][key][0][0] for key in ins['customer']]
customer_y = [ins['customer'][key][0][1] for key in ins['customer']]
satellite_x = [ins['satellite'][key][0][0] for key in ins['satellite']]
satellite_y = [ins['satellite'][key][0][1] for key in ins['satellite']]
depot_x = [ins['depot'][key][0][0] for key in ins['depot']]
depot_y = [ins['depot'][key][0][1] for key in ins['depot']]
# [106.55353126, 31.57856261]
# satellite_x[-2], satellite_y[-2] = 103.55353126, 30.57856261
plt.scatter(customer_x, customer_y, marker='x', s=50, c='k', lw=1,label='demand nodes')
plt.scatter(satellite_x, satellite_y, marker='o', s=50, c='w', edgecolors='k',label='satellite nodes')
plt.scatter(depot_x, depot_y, marker='D', s=50, c='k', edgecolors='k',label='plants')
plt.xlabel('latitude')
plt.ylabel('longitude')
plt.legend()
plt.savefig('fffff.pdf', bbox_inches='tight', transparent=True, pad_inches=0.1)
plt.show()
# li = [(key, ins['customer'][key]) for key in ins['customer']]
# for a in li:
# print('{},{},{},{}'.format(a[0], a[1][0][0], a[1][0][1], sum(a[1][1])))
#
# break
def draw_route():
pos = {}
for ins in load_instance_json():
pos.update(ins['depot'])
pos.update(ins['satellite'])
pos.update(ins['customer'])
for key in pos:
pos[key] = pos[key][0]
print(pos)
break
separate, start = 0, 22
for ins_name, res_li in read_res(separate):
for res in res_li[start:]:
depot_satellite_route = res[1]
satellite_customer_route = res[2]
print(depot_satellite_route)
print(satellite_customer_route)
edges1 = []
for key in depot_satellite_route:
route_li = depot_satellite_route[key]
for li in route_li:
for i in range(len(li)):
if i == 0:
edges1.append([int(key), li[i]])
edges1.append([li[i], li[i+1]])
elif i == len(li) - 1:
edges1.append([li[i], int(key)])
else:
edges1.append([li[i], li[i+1]])
edges2 = []
for key in satellite_customer_route:
route_li = satellite_customer_route[key]
for li in route_li:
for i in range(len(li)):
if i == 0:
edges2.append([int(key), li[i]])
edges2.append([li[i], li[i + 1]])
elif i == len(li) - 1:
edges2.append([li[i], int(key)])
else:
edges2.append([li[i], li[i + 1]])
break
break
print(edges1)
print(edges2)
G = nx.Graph()
G.add_nodes_from([key for key in pos])
G.add_edges_from(edges1, alpha=0.5)
G.add_edges_from(edges2, alpha=0.5)
colors = ['silver'] * 2 + ['skyblue'] * 5 + ['w'] * 15
nodesize = [150] * 2 + [200] * 5 + [100] * 15
nx.draw_networkx_nodes(G, pos=pos, node_color=colors, node_size=nodesize, edge_color='r', widths=1)
nx.draw_networkx_labels(G, pos=pos, font_size=8)
nx.draw_networkx_edges(G, pos=pos, edge_color='k', alpha=0.8)
plt.savefig('network_{}.pdf'.format(separate), bbox_inches='tight', transparent=True, pad_inches=0.1)
plt.show()
if __name__ == '__main__':
# make_instance()
# main()
# write_res_analysis_csv()
# num_boxplot()
# obj_boxplot()
# scatter_ins()
draw_route()
# google_map_draw()
# for name, res_li in read_res(0):
# print(name)
# temp = 0
# temp1 = 0
# for res in res_li:
# temp += 1
# try:
# a = [key for key in res[2]]
# if '5' in a:
# temp1 += 1
# except:
# pass
# print(temp1 / temp)
# img = mpimg.imread('s_picture_satellite.png')
# print(img[0][1])
# plt.imshow(img, alpha=0.9)