-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhenoNet.R
315 lines (241 loc) · 14.1 KB
/
PhenoNet.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#########################
### PhenoNet pipeline ###
#########################
# Brainstorming and tentative tutorial for reconstructing the evolution of complexity in fishes using data from the Phenoscape KB.
# The dataset used was that of Mirande et al (2019).
# STEP 1. Loading the packages.
library("rphenoscape")
library("rphenoscate")
library("igraph")
# STEP 2. Assembling the data set from a given study.
# Retrieve list of phylogenetic studies.
studies <- get_studies()
# Get a particular study # (Change this part to get a particular study).
study <- studies$id[studies$label == 'Mirande (2019)']
# Get NeXML data.
selected_study <- get_study_data(study)
# Build the original character matrix.
char_mat <- RNeXML::get_characters(selected_study[[1]])
# Get rownames and colnames from data set.
row_mat <- rownames(char_mat)
col_mat <- colnames(char_mat)
# Check rownames and colnames from data set.
row_mat[1:3]
col_mat[1:3]
# OTU labels are not available.
# Get metadata the original character matrix.
selected_study_meta <- get_char_matrix_meta(selected_study[[1]])
# Get new rownames.
row_mat <- selected_study_meta$id_taxa$label[
match(rownames(char_mat), selected_study_meta$id_taxa$otu)]
# Remove duplicated species from matrix.
char_mat <- char_mat[-(which(row_mat == "Moenkhausia sanctaefilomenae")),]
row_mat <- row_mat[-(which(row_mat == "Moenkhausia sanctaefilomenae"))]
rownames(char_mat) <- row_mat
# STEP 3. Getting all semantic phenotypes from a given study.
# Retrieve all semantic phenotypes from the Phenoscape KB.
# Get all phenotype data from the study.
phenotypes <- get_phenotypes(study = study)
# Convert data to a phenotype object (Warning: ~10 min).
selected_study_obj <- as.phenotype(phenotypes, withTaxa = TRUE)
# Get all anatomical entities from the study.
ent <- unlist(sapply(selected_study_obj, function(x) x$eqs$entities ))
# STEP 4. Get dependency matrix and build a graph.
# Get dependency matrix.
ent2 <- unique(ent)
depmat <- pa_dep_matrix(ent2, .names = "label")
# Get a graph.
G <- depmat
diag(G) <- NA
G <- graph_from_adjacency_matrix(rphenoscate:::remove_indirect(t(as.matrix(G))))
# Plot graph.
plot(G, vertex.size = 3, edge.arrow.size = 0.5, vertex.label.cex = 0.5)
pdf(file = "graph.pdf")
plot(G, vertex.size = 3, edge.arrow.size = 0.5, vertex.label.cex = 0.5)
dev.off()
# Fancy graph.
x <- as.matrix(G)
# Remove indirect dependancies.
x <- rphenoscate:::remove_indirect(x)
# Remove NAs.
x[is.na(x)] <- 0
g1 <- graph_from_adjacency_matrix(x)
# Vertex size proportional to number of dependancies.
V(g1)$size <- (rowSums(x) + 1) / (max(rowSums(x))/8) # the divider here controls the relative size difference of the vertices.
# Vertex colour based on shortest path distance from root.
pd <- shortest.paths(g1, 1)
V(g1)$color <- pd
g1$palette <- hcl.colors(max(pd))
# Plot.
plot(g1, edge.arrow.size=0.5, vertex.label = 1:nrow(x), vertex.label.cex = 0.4, vertex.label.color= "black")
# STEP 5a. Extract and plot subgraphs (better trying with OntoTrace!---see below).
char_mat2 <- matrix(0, nrow(char_mat), length(unique(ent)))
rownames(char_mat2) <- rownames(char_mat)
colnames(char_mat2) <- colnames(depmat)
for(i in 1:length(selected_study_obj)){
v_no <- which(ent2 %in% selected_study_obj[[i]]$eqs$entities)
tax <- which(rownames(char_mat2) %in% selected_study_obj[[i]]$taxa$label)
char_mat2[tax, v_no] <- 1
}
taxon_x <- 1
# Plot a subgraph.
g2 <- subgraph(g1, which(char_mat2[taxon_x,] == 1))
g2_m <- t(as_adjacency_matrix(g2, sparse = F))
V(g2)$size <- (rowSums(g2_m) + 4) / (max(rowSums(g2_m))/10) # the divider here controls the relative size difference of the vertices.
plot(g2, edge.arrow.size=0.5, vertex.label = which(char_mat2[taxon_x,] == 1), vertex.label.cex = 0.4, vertex.label.color= "black")
# Testing the connectivity of subgraphs.
g2 <- subgraph(g1, which(char_mat2[taxon_x,] == 1))
disconected <- setdiff(V(g2), subcomponent(g2, 1, mode = "all")) #ID of disconected nodes in g2
disconected_char <- which(colnames(char_mat2) %in% names(V(g2)[setdiff(V(g2), subcomponent(g2, 1, mode = "all"))])) #ID of disconected characters in g2
missing_nodes <- numeric()
for(j in disconected_char){
missing_nodes <- c(missing_nodes, subcomponent(g1, j, mode = "out"))
}
missing_nodes <- unique(missing_nodes)
taxon_x_nodes <- which(char_mat2[i,] == 1)
missing_nodes <- setdiff(missing_nodes, taxon_x_nodes) # remove upstream nodes that are already coded as prsent (e.g. multicelularity)
# Add missing nodes.
char_mat2[taxon_x,missing_nodes] <- 1
# Replot.
g2 <- subgraph(g1, which(char_mat2[taxon_x,] == 1))
g2_m <- t(as_adjacency_matrix(g2, sparse = F))
V(g2)$size <- (rowSums(g2_m) + 4) / (max(rowSums(g2_m))/10) # the divider here controls the relative size difference of the vertices.
plot(g2, edge.arrow.size=0.5, vertex.label = which(char_mat2[taxon_x,] == 1), vertex.label.cex = 0.4, vertex.label.color= "black")
############################################################################
# STEP 5b. Rework with OntoTrace.
# Call ontotrace.
onto <- rphenoscape::get_ontotrace_data(taxon = rownames(char_mat), entity = colnames(depmat), subsume = F, variable_only = F)
# Get char matrix.
char_mat3 <- RNeXML::get_characters(onto)
# Get list of indices for polymorphic cells.
poly <- which(char_mat3 == "1 and 0", arr.ind = T)
poly <- rbind(poly, which(char_mat3 == "0 and 1", arr.ind = T))
char_mat4 <- char_mat3 #backup
for(i in 1:nrow(poly)){
char_mat4[poly[i,1], poly[i, 2]] <- 1
}
char_mat4 <- type.convert(char_mat4)
char_mat4 <- as.matrix(char_mat4)
# Lots of NAs. Could do ASR to guess presence/absence. We will just infer everything as present.
char_mat4[is.na(char_mat4)] <- 1
# Get subgraphs.
tax_subgraphs <- list()
for(i in 1:nrow(char_mat4)){
g2 <- subgraph(g1, which(char_mat4[i,] == 1))
g3_v <- subcomponent(g2, 1, mode = "all")
tax_subgraphs[[i]] <- subgraph(graph = g2, v = g3_v)
}
v_per_taxa <- unlist(lapply(tax_subgraphs, function(x) vcount(x)))
# Get decent looking taxa.
tax_subgraphs2 <- tax_subgraphs[which(v_per_taxa > 140)]
##################################################################
# STEP 6. Plotting evolution of complexity.
# Get a timetree for the fish taxa. Only 130 or so species.
timetree <- fishtree_phylogeny(species = rownames(char_mat4)[which(v_per_taxa > 140)], type = "chronogram")
# Get graphs for species which are in the tree.
# List of species with > 140 vertices in graphs (names fixed to match timetree).
decent_species <- c("Acestrocephalus_sardina", "Acestrorhynchus_lacustris", "Acestrorhynchus_pantaneiro",
"Acrobrycon_ipanquianus", "Agoniates_anchovia", "Agoniates_halecinus",
"Apareiodon_affinis", "Aphyocharacidium_bolivianum", "Aphyocharax_anisitsi",
"Aphyocharax_dentatus", "Aphyocharax_nattereri", "Aphyodite_grammica",
"Argopleura_magdalenensis", "Astyanacinus_moorii", "Astyanax_abramis",
"Astyanax_aurocaudatus", "Astyanax_bransfordii", "Astyanax_cf._rutilus",
"Astyanax_chico", "Astyanax_correntinus", "Astyanax_cremnobates",
"Astyanax_eigenmanniorum", "Astyanax_endy", "Astyanax_intermedius",
"Astyanax_lacustris", "Astyanax_latens", "Astyanax_lineatus",
"Astyanax_mexicanus", "Astyanax_paris", "Astyanax_pellegrini",
"Astyanax_puka", "Astyanax_troya", "Atopomesus_pachyodus", "Attonitus_ephimeros",
"Aulixidens_eugeniae", "Axelrodia_lindeae", "Bario_steindachneri",
"Boulengerella_lateristriga", "Brachychalcinus_copei", "Brittanichthys_axelrodi",
"Brycon_falcatus", "Brycon_gouldingi", "Brycon_orbignyanus",
"Brycon_pesu", "Brycon_polylepis", "Bryconaethiops_macrops",
"Bryconamericus_agna", "Bryconamericus_cf._iheringii", "Bryconamericus_exodon",
"Bryconamericus_heteresthes", "Bryconamericus_iheringii", "Bryconamericus_ikaa",
"Bryconamericus_mennii", "Bryconamericus_rubropictus", "Bryconamericus_stramineus",
"Bryconamericus_uporas", "Bryconella_pallidifrons", "Bryconexodon_juruenae",
"Bryconops_affinis", "Bryconops_melanurus", "Carlana_eigenmanni",
"Carnegiella_strigata", "Chalceus_macrolepidotus", "Characidium_rachovii",
"Characidium_zebra", "Charax_leticiae", "Charax_stenopterus",
"Cheirodon_interruptus", "Compsura_heterura", "Creagrutus_anary",
"Creagrutus_atrisignum", "Creagrutus_meridionalis", "Creagrutus_taphorni",
"Ctenobrycon_hauxwellianus", "Cyanogaster_noctivaga", "Cynopotamus_argenteus",
"Cyphocharax_spilotus", "Deuterodon_iguape", "Deuterodon_langei",
"Deuterodon_longirostris", "Deuterodon_potaroensis", "Deuterodon_rosae",
"Deuterodon_sp.", "Deuterodon_stigmaturus", "Diapoma_alburnum",
"Diapoma_guarani", "Diapoma_obi", "Diapoma_speculiferum", "Diapoma_terofali",
"Diapoma_uruguayense", "Distichodus_maculatus", "Ectrepopterus_uruguayensis",
"Engraulisoma_taeniatum", "Eretmobrycon_emperador", "Eretmobrycon_peruanus",
"Eretmobrycon_scleroparius", "Erythrocharax_altipinnis", "Exodon_paradoxus",
"Galeocharax_gulo", "Galeocharax_humeralis", "Gnathocharax_steindachneri",
"Grundulus_bogotensis", "Gymnocharacinus_bergii", "Gymnocorymbus_ternetzi",
"Hasemania_crenuchoides", "Hasemania_nana", "Hemibrycon_caucanus",
"Hemibrycon_dariensis", "Hemibrycon_surinamensis", "Hemigrammus_aguaruna",
"Hemigrammus_bleheri", "Hemigrammus_cf._lunatus", "Hemigrammus_erythrozonus",
"Hemigrammus_haraldi", "Hemigrammus_marginatus", "Hemigrammus_pulcher",
"Hemigrammus_rodwayi", "Hemigrammus_ulreyi", "Hemigrammus_unilineatus",
"Hemiodus_thayeria", "Heterocharax_macrolepis", "Heterocheirodon_yatai",
"Hollandichthys_multifasciatus", "Hoplias_cf._malabaricus", "Hoplocharax_goethei",
"Hyphessobrycon_anisitsi", "Hyphessobrycon_bifasciatus", "Hyphessobrycon_boulengeri",
"Hyphessobrycon_compressus", "Hyphessobrycon_elachys", "Hyphessobrycon_eques",
"Hyphessobrycon_erythrostigma", "Hyphessobrycon_herbertaxelrodi",
"Hyphessobrycon_loweae", "Hyphessobrycon_megalopterus", "Hyphessobrycon_meridionalis",
"Hyphessobrycon_moniliger", "Hyphessobrycon_montagi", "Hyphessobrycon_poecilioides",
"Hyphessobrycon_pulchripinnis", "Hyphessobrycon_santae", "Hyphessobrycon_socolofi",
"Hyphessobrycon_vanzolinii", "Hyphessobrycon_wajat", "Iguanodectes_geisleri",
"Inpaichthys_kerri", "Jupiaba_acanthogaster", "Jupiaba_anteroides",
"Jupiaba_mucronata", "Jupiaba_polylepis", "Jupiaba_scologaster",
"Knodus_breviceps", "Knodus_gamma", "Knodus_meridae", "Knodus_moenkhausii",
"Knodus_tanaothoros", "Leporinus_striatus", "Lonchogenys_ilisha",
"Macropsobrycon_uruguayanae", "Markiana_nigripinnis", "Metynnis_mola",
"Micralestes_stormsi", "Microgenys_minuta", "Microschemobrycon_casiquiare",
"Mimagoniates_rheocharis", "Moenkhausia_bonita", "Moenkhausia_ceros",
"Moenkhausia_collettii", "Moenkhausia_cotinho", "Moenkhausia_dichroura",
"Moenkhausia_heikoi", "Moenkhausia_jamesi", "Moenkhausia_lata",
"Moenkhausia_lepidura", "Moenkhausia_pirauba", "Moenkhausia_xinguensis",
"Myxiops_aphos", "Nantis_indefessus", "Nematocharax_venustus",
"Odontostilbe_fugitiva", "Odontostilbe_microcephala", "Odontostilbe_paraguayensis",
"Odontostilbe_pequira", "Odontostilbe_pulchra", "Odontostoechus_lethostigmus",
"Oligosarcus_bolivianus", "Oligosarcus_itau", "Oligosarcus_jenynsii",
"Oligosarcus_longirostris", "Oligosarcus_menezesi", "Oligosarcus_paranensis",
"Oligosarcus_pintoi", "Orthospinus_franciscensis", "Paracheirodon_axelrodi",
"Parecbasis_cyclolepis", "Parodon_nasus", "Petitella_georgiae",
"Phenacogaster_franciscoensis", "Phenacogaster_tegatus", "Phenagoniates_macrolepis",
"Phycocharax_rasbora", "Piabarchus_analis", "Piabina_argentea",
"Piabina_thomasi", "Piabucus_melanostoma", "Piaractus_mesopotamicus",
"Poptella_paraguayensis", "Prionobrama_filigera", "Prionobrama_paraguayensis",
"Pristella_maxillaris", "Probolodus_heterostomus", "Prochilodus_lineatus",
"Prodontocharax_melanotus", "Psellogrammus_kennedyi", "Pseudochalceus_kyburzi",
"Pseudocheirodon_terrabae", "Pseudocorynopoma_doriae", "Pseudocorynopoma_heterandria",
"Pyrrhulina_australis", "Rhaphiodon_vulpinus", "Rhoadsia_altipinna",
"Roeboexodon_guyanensis", "Roeboides_descalvadensis", "Roeboides_microlepis",
"Salminus_brasiliensis", "Salminus_hilarii", "Serrapinnus_calliurus",
"Serrapinnus_microdon", "Serrapinnus_notomelas", "Serrasalmus_maculatus",
"Serrasalmus_rhombeus", "Spintherobolus_ankoseion", "Stethaprion_erythrops",
"Stichonodon_insignis", "Tetragonopterus_argenteus", "Tetragonopterus_chalceus",
"Thayeria_boehlkei", "Thayeria_obliqua", "Thoracocharax_stellatus",
"Triportheus_angulatus", "Triportheus_nematurus", "Triportheus_pantanensis",
"Xenagoniates_bondi")
species_ID <- which(decent_species %in% timetree$tip.label)
tax_subgraphs3 <- tax_subgraphs2[species_ID]
names(tax_subgraphs3) <- decent_species[species_ID]
tax_subgraphs3 <- tax_subgraphs3[match(timetree$tip.label, names(tax_subgraphs3))]
# Number of dependencies per taxon = crude measure of phenotype complexity.
n_edges <- unlist(lapply(tax_subgraphs3, function(x) ecount(x)))
# Number of verticies (anatomical entities) per taxon = crude measure of phenotype complexity.
n_vertices <- unlist(lapply(tax_subgraphs3, function(x) vcount(x)))
# Mean minimum path distance to the root character = measure of nested dependancies = ???
r_centrality <- unlist(lapply(tax_subgraphs3, function(x) (sum(distances(x, v = 1, to = V(x), weights = NULL))/(vcount(x) -1))))
# Mean minimum path distance to the root character = measure of nested dependancies = ???
max_centrality <- unlist(lapply(tax_subgraphs3, function(x) max(distances(x, v = 1, to = V(x), weights = NULL))))
# Turns out this is equivalent to n_edges!
# Mean degree distribution of subgraph. Measure of the number of nested dependencies = better measure of complexity.
# First get average in and out the degree distributions for the entire dataset (g1).
g1_in <- degree_distribution(g1, cumulative = F, mode = "in") * vcount(g1)
max_degree <- sum(0:(length(g1_in) - 1) * g1_in)
degree <- unlist(lapply(tax_subgraphs3, function(x){
d_x <- degree_distribution(x, cumulative = F, mode = "in") * vcount(x)
(sum(0:(length(d_x) - 1) * d_x))/max_degree
}))
# Plot on tree!!!
obj<-contMap(timetree,n_edges, plot = F)
plot(obj, fsize = 0.4)