-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrun_prediction.py
210 lines (173 loc) · 7.95 KB
/
run_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
######################################################################################88
FREDHUTCH_HACKS = False # silly stuff Phil added for running on Hutch servers
if FREDHUTCH_HACKS:
import os
from shutil import which
os.environ['XLA_FLAGS']='--xla_gpu_force_compilation_parallelism=1'
os.environ["TF_FORCE_UNIFIED_MEMORY"] = '1'
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = '2.0'
assert which('ptxas') is not None
# this probably needs customizing...
assert os.environ['LD_LIBRARY_PATH'].startswith(
'/home/pbradley/anaconda2/envs/af2/lib:'),\
'export LD_LIBRARY_PATH=/home/pbradley/anaconda2/envs/af2/lib:$LD_LIBRARY_PATH'
import argparse
parser = argparse.ArgumentParser(
description="Run simple template-based alphafold inference",
epilog = f'''This script is borrowed from the original here:
https://github.com/phbradley/alphafold_finetune/blob/main/run_prediction.py
Examples:
# the test_setup_single/ directory would first be made by running the
# setup_for_alphafold.py
# script.
python run_prediction.py --targets test_setup_single/targets.tsv \
--outfile_prefix test_run_single --model_names model_2_ptm \
--data_dir $ALPHAFOLD_DATA_DIR
''',
formatter_class=argparse.RawDescriptionHelpFormatter,
)
parser.add_argument('--outfile_prefix',
help='Prefix that will be prepended to the output '
'filenames')
parser.add_argument('--final_outfile_prefix',
help='Prefix that will be prepended to the final output '
'tsv filename')
parser.add_argument('--targets', required=True, help='File listing the targets to '
'be modeled. See description of file format in the README '
'https://github.com/phbradley/alphafold_finetune/blob/main/README.md'
"and also examples in that repo's examples/*/*tsv")
parser.add_argument('--data_dir', help='Location of AlphaFold params/ folder')
parser.add_argument('--model_names', type=str, nargs='*', default=['model_2_ptm'])
parser.add_argument('--model_params_files', type=str, nargs='*',
help='Only needed if running with fine-tuned parameters or '
'parameters in a non-default location (ie, not in the params/ '
'folder in --data_dir)')
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--ignore_identities', action='store_true',
help='Ignore the sequence identities column in the templates '
'alignment files. Useful when modeling many different peptides '
'using the same alignment file.')
parser.add_argument('--no_pdbs', action='store_true', help='Dont write out pdbs')
parser.add_argument('--terse', action='store_true', help='Dont write out pdbs or '
'matrices with alphafold confidence values')
parser.add_argument('--no_resample_msa', action='store_true', help='Dont randomly '
'resample from the MSA during recycling. Perhaps useful for '
'testing...')
args = parser.parse_args()
import os
import sys
from os.path import exists
import itertools
import numpy as np
import pandas as pd
import predict_utils
targets = pd.read_table(args.targets)
lens = [len(x.target_chainseq.replace('/',''))
for x in targets.itertuples()]
crop_size = max(lens)
if args.verbose:
import jax
from os import popen # just to get hostname for logging, not necessary
# print some logging info
platform = jax.local_devices()[0].platform
hostname = popen('hostname').readlines()[0].strip()
print('cmd:', ' '.join(sys.argv))
print('local_device:', platform, 'hostname:', hostname, 'num_targets:',
targets.shape[0], 'max_len=', crop_size)
sys.stdout.flush()
model_runners = predict_utils.load_model_runners(
args.model_names,
crop_size,
args.data_dir,
model_params_files=args.model_params_files,
resample_msa_in_recycling = not args.no_resample_msa,
)
final_dfl = []
for counter, targetl in targets.iterrows():
print('START:', counter, 'of', targets.shape[0])
alignfile = targetl.templates_alignfile
assert exists(alignfile)
query_chainseq = targetl.target_chainseq
if 'outfile_prefix' in targetl:
outfile_prefix = targetl.outfile_prefix
else:
assert args.outfile_prefix is not None
if 'targetid' in targetl:
outfile_prefix = args.outfile_prefix+'_'+targetl.targetid
else:
outfile_prefix = f'{args.outfile_prefix}_T{counter}'
query_sequence = query_chainseq.replace('/','')
num_res = len(query_sequence)
data = pd.read_table(alignfile)
cols = ('template_pdbfile target_to_template_alignstring identities '
'target_len template_len'.split())
template_features_list = []
for tnum, row in data.iterrows():
#(template_pdbfile, target_to_template_alignstring,
# identities, target_len, template_len) = line[cols]
assert row.target_len == len(query_sequence)
target_to_template_alignment = {
int(x.split(':')[0]) : int(x.split(':')[1]) # 0-indexed
for x in row.target_to_template_alignstring.split(';')
}
template_name = f'T{tnum:03d}' # dont think this matters
template_features = predict_utils.create_single_template_features(
query_sequence, row.template_pdbfile, target_to_template_alignment,
template_name, allow_chainbreaks=True, allow_skipped_lines=True,
expected_identities = None if args.ignore_identities else row.identities,
expected_template_len = row.template_len,
)
template_features_list.append(template_features)
all_template_features = predict_utils.compile_template_features(
template_features_list)
msa=[query_sequence]
deletion_matrix=[[0]*len(query_sequence)]
all_metrics = predict_utils.run_alphafold_prediction(
query_sequence=query_sequence,
msa=msa,
deletion_matrix=deletion_matrix,
chainbreak_sequence=query_chainseq,
template_features=all_template_features,
model_runners=model_runners,
out_prefix=outfile_prefix,
crop_size=crop_size,
dump_pdbs = not (args.no_pdbs or args.terse),
dump_metrics = not args.terse,
)
outl = targetl.copy()
for model_name, metrics in all_metrics.items():
plddts = metrics['plddt']
paes = metrics.get('predicted_aligned_error', None)
filetags = 'pdb plddt ptm predicted_aligned_error'.split()
for tag in filetags:
fname = metrics.get(tag+'file', None)
if fname is not None:
outl[f'{model_name}_{tag}_file'] = fname
cs = query_chainseq.split('/')
chain_stops = list(itertools.accumulate(len(x) for x in cs))
chain_starts = [0]+chain_stops[:-1]
nres = chain_stops[-1]
assert nres == num_res
outl[model_name+'_plddt'] = np.mean(plddts[:nres])
if paes is not None:
outl[model_name+'_pae'] = np.mean(paes[:nres,:nres])
for chain1,(start1,stop1) in enumerate(zip(chain_starts, chain_stops)):
outl[f'{model_name}_plddt_{chain1}'] = np.mean(plddts[start1:stop1])
if paes is not None:
for chain2 in range(len(cs)):
start2, stop2 = chain_starts[chain2], chain_stops[chain2]
pae = np.mean(paes[start1:stop1,start2:stop2])
outl[f'{model_name}_pae_{chain1}_{chain2}'] = pae
final_dfl.append(outl)
if args.final_outfile_prefix:
outfile_prefix = args.final_outfile_prefix
elif args.outfile_prefix:
outfile_prefix = args.outfile_prefix
elif 'outfile_prefix' in targets.columns:
outfile_prefix = targets.outfile_prefix.iloc[0]
else:
outfile_prefix = None
if outfile_prefix:
outfile = f'{outfile_prefix}_final.tsv'
pd.DataFrame(final_dfl).to_csv(outfile, sep='\t', index=False)
print('made:', outfile)