-
Notifications
You must be signed in to change notification settings - Fork 157
/
Copy pathtrain_dqn.py
222 lines (198 loc) · 6.51 KB
/
train_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
import json
import os
import numpy as np
import torch.nn as nn
import pfrl
from pfrl import agents, experiments, explorers
from pfrl import nn as pnn
from pfrl import replay_buffers, utils
from pfrl.initializers import init_chainer_default
from pfrl.q_functions import DiscreteActionValueHead
from pfrl.wrappers import atari_wrappers
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--env",
type=str,
default="BreakoutNoFrameskip-v4",
help="OpenAI Atari domain to perform algorithm on.",
)
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 31)")
parser.add_argument(
"--gpu", type=int, default=0, help="GPU to use, set to -1 if no GPU."
)
parser.add_argument("--demo", action="store_true", default=False)
parser.add_argument("--load-pretrained", action="store_true", default=False)
parser.add_argument(
"--pretrained-type", type=str, default="best", choices=["best", "final"]
)
parser.add_argument("--load", type=str, default=None)
parser.add_argument(
"--log-level",
type=int,
default=20,
help="Logging level. 10:DEBUG, 20:INFO etc.",
)
parser.add_argument(
"--render",
action="store_true",
default=False,
help="Render env states in a GUI window.",
)
parser.add_argument(
"--monitor",
action="store_true",
default=False,
help=(
"Monitor env. Videos and additional information are saved as output files."
),
)
parser.add_argument(
"--steps",
type=int,
default=5 * 10**7,
help="Total number of timesteps to train the agent.",
)
parser.add_argument(
"--replay-start-size",
type=int,
default=5 * 10**4,
help="Minimum replay buffer size before " + "performing gradient updates.",
)
parser.add_argument("--eval-n-steps", type=int, default=125000)
parser.add_argument("--eval-interval", type=int, default=250000)
parser.add_argument("--n-best-episodes", type=int, default=30)
args = parser.parse_args()
import logging
logging.basicConfig(level=args.log_level)
# Set a random seed used in PFRL.
utils.set_random_seed(args.seed)
# Set different random seeds for train and test envs.
train_seed = args.seed
test_seed = 2**31 - 1 - args.seed
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print("Output files are saved in {}".format(args.outdir))
def make_env(test):
# Use different random seeds for train and test envs
env_seed = test_seed if test else train_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=None),
episode_life=not test,
clip_rewards=not test,
)
env.seed(int(env_seed))
if test:
# Randomize actions like epsilon-greedy in evaluation as well
env = pfrl.wrappers.RandomizeAction(env, 0.05)
if args.monitor:
env = pfrl.wrappers.Monitor(
env, args.outdir, mode="evaluation" if test else "training"
)
if args.render:
env = pfrl.wrappers.Render(env)
return env
env = make_env(test=False)
eval_env = make_env(test=True)
n_actions = env.action_space.n
q_func = nn.Sequential(
pnn.LargeAtariCNN(),
init_chainer_default(nn.Linear(512, n_actions)),
DiscreteActionValueHead(),
)
# Use the same hyperparameters as the Nature paper
opt = pfrl.optimizers.RMSpropEpsInsideSqrt(
q_func.parameters(),
lr=2.5e-4,
alpha=0.95,
momentum=0.0,
eps=1e-2,
centered=True,
)
rbuf = replay_buffers.ReplayBuffer(10**6)
explorer = explorers.LinearDecayEpsilonGreedy(
start_epsilon=1.0,
end_epsilon=0.1,
decay_steps=10**6,
random_action_func=lambda: np.random.randint(n_actions),
)
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
Agent = agents.DQN
agent = Agent(
q_func,
opt,
rbuf,
gpu=args.gpu,
gamma=0.99,
explorer=explorer,
replay_start_size=args.replay_start_size,
target_update_interval=10**4,
clip_delta=True,
update_interval=4,
batch_accumulator="sum",
phi=phi,
)
if args.load or args.load_pretrained:
# either load or load_pretrained must be false
assert not args.load or not args.load_pretrained
if args.load:
agent.load(args.load)
else:
agent.load(
utils.download_model("DQN", args.env, model_type=args.pretrained_type)[
0
]
)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env, agent=agent, n_steps=args.eval_n_steps, n_episodes=None
)
print(
"n_episodes: {} mean: {} median: {} stdev {}".format(
eval_stats["episodes"],
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_with_evaluation(
agent=agent,
env=env,
steps=args.steps,
eval_n_steps=args.eval_n_steps,
eval_n_episodes=None,
eval_interval=args.eval_interval,
outdir=args.outdir,
save_best_so_far_agent=True,
eval_env=eval_env,
)
dir_of_best_network = os.path.join(args.outdir, "best")
agent.load(dir_of_best_network)
# run 30 evaluation episodes, each capped at 5 mins of play
stats = experiments.evaluator.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.n_best_episodes,
max_episode_len=4500,
logger=None,
)
with open(os.path.join(args.outdir, "bestscores.json"), "w") as f:
json.dump(stats, f)
print("The results of the best scoring network:")
for stat in stats:
print(str(stat) + ":" + str(stats[stat]))
if __name__ == "__main__":
main()