-
Notifications
You must be signed in to change notification settings - Fork 157
/
Copy pathtrain_a3c.py
204 lines (182 loc) · 6.6 KB
/
train_a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import argparse
import os
# Prevent numpy from using multiple threads
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np # NOQA:E402
from torch import nn # NOQA:E402
import pfrl # NOQA:E402
from pfrl import experiments, utils # NOQA:E402
from pfrl.agents import a3c # NOQA:E402
from pfrl.optimizers import SharedRMSpropEpsInsideSqrt # NOQA:E402
from pfrl.policies import SoftmaxCategoricalHead # NOQA:E402
from pfrl.wrappers import atari_wrappers # NOQA:E402
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--processes", type=int, default=16)
parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 31)")
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument("--t-max", type=int, default=5)
parser.add_argument("--beta", type=float, default=1e-2)
parser.add_argument("--profile", action="store_true")
parser.add_argument("--steps", type=int, default=8 * 10**7)
parser.add_argument(
"--max-frames",
type=int,
default=30 * 60 * 60, # 30 minutes with 60 fps
help="Maximum number of frames for each episode.",
)
parser.add_argument("--lr", type=float, default=7e-4)
parser.add_argument("--eval-interval", type=int, default=250000)
parser.add_argument("--eval-n-steps", type=int, default=125000)
parser.add_argument("--demo", action="store_true", default=False)
parser.add_argument("--load-pretrained", action="store_true", default=False)
parser.add_argument(
"--pretrained-type", type=str, default="best", choices=["best", "final"]
)
parser.add_argument("--load", type=str, default="")
parser.add_argument(
"--log-level",
type=int,
default=20,
help="Logging level. 10:DEBUG, 20:INFO etc.",
)
parser.add_argument(
"--render",
action="store_true",
default=False,
help="Render env states in a GUI window.",
)
parser.add_argument(
"--monitor",
action="store_true",
default=False,
help=(
"Monitor env. Videos and additional information are saved as output files."
),
)
args = parser.parse_args()
import logging
logging.basicConfig(level=args.log_level)
# Set a random seed used in PFRL.
# If you use more than one processes, the results will be no longer
# deterministic even with the same random seed.
utils.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.processes) + args.seed * args.processes
assert process_seeds.max() < 2**31
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print("Output files are saved in {}".format(args.outdir))
def make_env(process_idx, test):
# Use different random seeds for train and test envs
process_seed = process_seeds[process_idx]
env_seed = 2**31 - 1 - process_seed if test else process_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
episode_life=not test,
clip_rewards=not test,
)
env.seed(int(env_seed))
if args.monitor:
env = pfrl.wrappers.Monitor(
env, args.outdir, mode="evaluation" if test else "training"
)
if args.render:
env = pfrl.wrappers.Render(env)
return env
sample_env = make_env(0, False)
obs_size = sample_env.observation_space.low.shape[0]
n_actions = sample_env.action_space.n
model = nn.Sequential(
nn.Conv2d(obs_size, 16, 8, stride=4),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(2592, 256),
nn.ReLU(),
pfrl.nn.Branched(
nn.Sequential(
nn.Linear(256, n_actions),
SoftmaxCategoricalHead(),
),
nn.Linear(256, 1),
),
)
# SharedRMSprop is same as torch.optim.RMSprop except that it initializes
# its state in __init__, allowing it to be moved to shared memory.
opt = SharedRMSpropEpsInsideSqrt(model.parameters(), lr=7e-4, eps=1e-1, alpha=0.99)
assert opt.state_dict()["state"], (
"To share optimizer state across processes, the state must be"
" initialized before training."
)
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
agent = a3c.A3C(
model,
opt,
t_max=args.t_max,
gamma=0.99,
beta=args.beta,
phi=phi,
max_grad_norm=40.0,
)
if args.load or args.load_pretrained:
# either load or load_pretrained must be false
assert not args.load or not args.load_pretrained
if args.load:
agent.load(args.load)
else:
agent.load(
utils.download_model("A3C", args.env, model_type=args.pretrained_type)[
0
]
)
if args.demo:
env = make_env(0, True)
eval_stats = experiments.eval_performance(
env=env, agent=agent, n_steps=args.eval_n_steps, n_episodes=None
)
print(
"n_steps: {} mean: {} median: {} stdev: {}".format(
args.eval_n_steps,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
for pg in agent.optimizer.param_groups:
assert "lr" in pg
pg["lr"] = value
lr_decay_hook = experiments.LinearInterpolationHook(
args.steps, args.lr, 0, lr_setter
)
experiments.train_agent_async(
agent=agent,
outdir=args.outdir,
processes=args.processes,
make_env=make_env,
profile=args.profile,
steps=args.steps,
eval_n_steps=args.eval_n_steps,
eval_n_episodes=None,
eval_interval=args.eval_interval,
global_step_hooks=[lr_decay_hook],
save_best_so_far_agent=True,
)
if __name__ == "__main__":
main()