-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbfs.cpp
135 lines (108 loc) · 2.98 KB
/
bfs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/*
Copyright 2018 Pierre-Edouard Portier
peportier.me
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
)
*/
#include <iostream>
#include <vector>
#include <set>
#include <queue>
#include <map>
#include <functional>
#include <limits>
using namespace std;
struct
node
{
int val;
vector< node* > nei;
node() {};
node(int i) : val(i) {}
};
typedef function<void(node*)> Visitor;
void
breadth( node* src, Visitor f )
{
set<node*> x; // x is the set of black and grey nodes
queue<node*> y; // y is the queue (FIFO) of grey nodes
y.push(src); x.insert(src); // at the beginning, the source is the only grey node
while( !y.empty() ) // there are still grey nodes
{
node* u = y.front(); // u is the 'oldest' element of y
f(u); // visit u
for( node* n : u->nei )
{
if( x.end() == x.find(n) ) // n is a white successor of u
{
y.push(n); x.insert(n); // n becomes grey
}
}
y.pop(); // u becomes black
}
}
Visitor visit = [](node* v){
cout << v->val << " ; ";
};
void
findDistances( node* src, map<node*,size_t>* distances )
{
// local function used to return infinity when
// for a node we do not yet know a distance to the source
function<size_t(node*)>
distance = [&]( node* v )
{
map<node*,size_t>::iterator distIt = distances->find(v);
if( distances->end() == distIt )
{
return numeric_limits<size_t>::max();
}
return distIt->second;
};
Visitor
visit = [&]( node* v )
{
// update the shortest known distance to the
// successors of the currently visited node
size_t vDist = distance(v);
for (node* n : v->nei)
{
size_t nDist = distance(n);
(*distances)[n] = min( nDist, 1 + vDist );
}
};
// distance from the source to the source is zero
if( distances->empty() ) (*distances)[src] = 0;
breadth(src, visit);
}
int
main()
{
// example of a graph
node n1(1); node n2(2); node n3(3);
node n4(4); node n5(5); node n6(6);
n1.nei.push_back( &n2 );
n1.nei.push_back( &n3 );
n2.nei.push_back( &n4 );
n4.nei.push_back( &n3 );
n4.nei.push_back( &n5 );
n5.nei.push_back( &n2 );
n5.nei.push_back( &n6 );
breadth(&n1, visit); cout << endl;
map<node*,size_t> distances;
findDistances(&n1, &distances);
for( const auto& p : distances )
{
cout << (p.first)->val << " : " << p.second << " ; ";
}
cout << endl;
return 0;
}