-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_k-fold.py
177 lines (147 loc) · 6.07 KB
/
test_k-fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import os
import warnings
from pathlib import Path
import pandas as pd
import pytorch_lightning as pl
import torch
import yaml
from torch.utils.data import DataLoader
from classifier import ClassifierLightning
from data import MILDataset, get_multi_cohort_df
from options import Options
from utils import save_results
"""
test trained models on in-domain test set and external test set.
run file with:
python test.py --name <name-of-training-run> --config <path-to-training-config-file>
"""
# filter out UserWarnings from the torchmetrics package
warnings.filterwarnings("ignore", category=UserWarning)
def main(cfg):
cfg.seed = torch.randint(0, 1000, (1, )).item() if cfg.seed is None else cfg.seed
pl.seed_everything(cfg.seed, workers=True)
base_path = Path(cfg.save_dir)
cfg.logging_name = f'{cfg.name}_{cfg.model}_{"-".join(cfg.cohorts)}_{cfg.norm}_{cfg.target}' if cfg.name != 'debug' else 'debug'
base_path = base_path / cfg.logging_name
base_path.mkdir(parents=True, exist_ok=True)
model_path = base_path / 'models'
result_path = base_path / 'results'
result_path.mkdir(parents=True, exist_ok=True)
norm_test = 'raw' if cfg.norm in ['histaugan', 'efficient_histaugan'] else cfg.norm
# --------------------------------------------------------
# load data
# --------------------------------------------------------
print('\n--- load dataset ---')
data, clini_info = get_multi_cohort_df(
cfg.data_config,
cfg.cohorts, [cfg.target],
cfg.label_dict,
norm=cfg.norm,
feats=cfg.feats,
clini_info=cfg.clini_info
)
cfg.clini_info = clini_info
cfg.input_dim += len(cfg.clini_info.keys())
for cohort in cfg.cohorts:
if cohort in cfg.ext_cohorts:
cfg.ext_cohorts.pop(cfg.ext_cohorts.index(cohort))
train_cohorts = f'{", ".join(cfg.cohorts)}'
test_cohorts = [train_cohorts, *cfg.ext_cohorts]
results = {t: [] for t in test_cohorts}
test_ext_dataloader = []
for ext in cfg.ext_cohorts:
test_data, clini_info = get_multi_cohort_df(
cfg.data_config, [ext], [cfg.target],
cfg.label_dict,
norm=norm_test,
feats=cfg.feats,
clini_info=cfg.clini_info
)
dataset_ext = MILDataset(
test_data,
list(range(len(test_data))),
[cfg.target],
clini_info=clini_info,
norm=norm_test,
)
test_ext_dataloader.append(
DataLoader(
dataset=dataset_ext,
batch_size=1,
shuffle=False,
num_workers=int(os.environ.get('SLURM_CPUS_PER_TASK', '1')),
pin_memory=True
)
)
print(f'training cohorts: {train_cohorts}')
print(f'testing cohorts: {cfg.ext_cohorts}')
# --------------------------------------------------------
# k-fold cross validation
# --------------------------------------------------------
# load fold directory from data_config
with open(cfg.data_config, 'r') as f:
data_config = yaml.safe_load(f)
fold_path = Path(data_config[train_cohorts]['folds']) / f"{cfg.target}_{cfg.folds}folds"
fold_path.mkdir(parents=True, exist_ok=True)
for k in range(cfg.folds):
# read split from csv-file if exists already else save split to csv
if Path(fold_path / f'fold{k}_test.csv').exists():
test_idxs = pd.read_csv(fold_path / f'fold{k}_test.csv', index_col='Unnamed: 0').index
# test dataset (in-domain)
test_dataset = MILDataset(
data, test_idxs, [cfg.target], norm=norm_test, clini_info=cfg.clini_info
)
print(f'num test samples in fold {k}: {len(test_dataset)}')
test_dataloader = DataLoader(
dataset=test_dataset,
batch_size=1,
shuffle=False,
num_workers=int(os.environ.get('SLURM_CPUS_PER_TASK', '1')),
pin_memory=True
)
# --------------------------------------------------------
# model
# --------------------------------------------------------
model = ClassifierLightning(cfg)
# --------------------------------------------------------
# testing
# --------------------------------------------------------
trainer = pl.Trainer(
accelerator='auto',
devices=1,
max_epochs=cfg.num_epochs,
val_check_interval=cfg.val_check_interval,
check_val_every_n_epoch=None,
enable_model_summary=False,
)
checkpoint_path = model_path / f'best_model_{cfg.logging_name}_fold{k}.ckpt'
assert checkpoint_path.exists(), f'best model file {checkpoint_path} does not exist'
test_cohorts_dataloader = [test_dataloader, *test_ext_dataloader]
for idx in range(len(test_cohorts)):
print("Testing: ", test_cohorts[idx])
results_test = trainer.test(
model,
test_cohorts_dataloader[idx],
ckpt_path=checkpoint_path,
)
results[test_cohorts[idx]].append(results_test[0])
# save patient predictions to outputs csv file
model.outputs.to_csv(result_path / f'fold{k}' / f'outputs_{test_cohorts[idx]}.csv')
# save results to csv file
save_results(cfg, results, base_path, train_cohorts, test_cohorts)
if __name__ == '__main__':
parser = Options()
args = parser.parse()
# Load the configuration from the YAML file
with open(args.config_file, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
# Update the configuration with the values from the argument parser
for arg_name, arg_value in vars(args).items():
if arg_value is not None and arg_name != 'config_file':
config[arg_name] = getattr(args, arg_name)
print('\n--- load options ---')
for name, value in sorted(config.items()):
print(f'{name}: {str(value)}')
config = argparse.Namespace(**config)
main(config)