forked from lancedb/vectordb-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
92 lines (75 loc) · 2.71 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import pytest
import os
import openai
import argparse
import lancedb
import re
import pickle
import requests
import zipfile
from pathlib import Path
from main import get_document_title
from langchain.document_loaders import BSHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
# TESTING ===============================================================
@pytest.fixture
def mock_embed(monkeypatch):
def mock_embed_query(query, x):
return [0.5, 0.5]
monkeypatch.setattr(OpenAIEmbeddings, "embed_query", mock_embed_query)
def test_main(mock_embed):
os.mkdir("./tmp")
args = argparse.Namespace(query="test", openai_key="test")
os.environ["OPENAI_API_KEY"] = "test"
docs_path = Path("docs.pkl")
docs = []
pandas_docs = requests.get(
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"
)
with open("./tmp/pandas.documentation.zip", "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile("./tmp/pandas.documentation.zip")
file.extractall(path="./tmp/pandas_docs")
if not docs_path.exists():
for p in Path("./tmp/pandas_docs/pandas.documentation").rglob("*.html"):
print(p)
if p.is_dir():
continue
loader = BSHTMLLoader(p, open_encoding="utf8")
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
db = lancedb.connect("./tmp/lancedb")
table = db.create_table(
"pandas_docs",
data=[
{
"vector": OpenAIEmbeddings().embed_query("Hello World"),
"text": "Hello World",
"id": "1",
}
],
mode="overwrite",
)
# docsearch = LanceDB.from_documents(documents, OpenAIEmbeddings, connection=table)
# qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
# result = qa.run(args.query)
# print(result)