forked from syoyo/tinygltf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglview.cc
1030 lines (865 loc) · 31.7 KB
/
glview.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <limits>
#include <string>
#include <vector>
#include <GL/glew.h>
#define GLFW_INCLUDE_GLU
#include <GLFW/glfw3.h>
#ifdef _WIN32
#include "../common/trackball.h"
#else
#include "trackball.h"
#endif
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_WRITE_IMPLEMENTATION
#ifdef _WIN32
#include "../../tiny_gltf.h"
#else
#include "tiny_gltf.h"
#endif
#define BUFFER_OFFSET(i) ((char *)NULL + (i))
#define CheckGLErrors(desc) \
{ \
GLenum e = glGetError(); \
if (e != GL_NO_ERROR) { \
printf("OpenGL error in \"%s\": %d (%d) %s:%d\n", desc, e, e, __FILE__, \
__LINE__); \
exit(20); \
} \
}
#define CAM_Z (3.0f)
int width = 768;
int height = 768;
double prevMouseX, prevMouseY;
bool mouseLeftPressed;
bool mouseMiddlePressed;
bool mouseRightPressed;
float curr_quat[4];
float prev_quat[4];
float eye[3], lookat[3], up[3];
GLFWwindow *window;
typedef struct {
GLuint vb;
} GLBufferState;
typedef struct {
std::vector<GLuint> diffuseTex; // for each primitive in mesh
} GLMeshState;
typedef struct {
std::map<std::string, GLint> attribs;
std::map<std::string, GLint> uniforms;
} GLProgramState;
typedef struct {
GLuint vb; // vertex buffer
size_t count; // byte count
} GLCurvesState;
std::map<int, GLBufferState> gBufferState;
std::map<std::string, GLMeshState> gMeshState;
std::map<int, GLCurvesState> gCurvesMesh;
GLProgramState gGLProgramState;
void CheckErrors(std::string desc) {
GLenum e = glGetError();
if (e != GL_NO_ERROR) {
fprintf(stderr, "OpenGL error in \"%s\": %d (%d)\n", desc.c_str(), e, e);
exit(20);
}
}
static std::string GetFilePathExtension(const std::string &FileName) {
if (FileName.find_last_of(".") != std::string::npos)
return FileName.substr(FileName.find_last_of(".") + 1);
return "";
}
bool LoadShader(GLenum shaderType, // GL_VERTEX_SHADER or GL_FRAGMENT_SHADER(or
// maybe GL_COMPUTE_SHADER)
GLuint &shader, const char *shaderSourceFilename) {
GLint val = 0;
// free old shader/program
if (shader != 0) {
glDeleteShader(shader);
}
std::vector<GLchar> srcbuf;
FILE *fp = fopen(shaderSourceFilename, "rb");
if (!fp) {
fprintf(stderr, "failed to load shader: %s\n", shaderSourceFilename);
return false;
}
fseek(fp, 0, SEEK_END);
size_t len = ftell(fp);
rewind(fp);
srcbuf.resize(len + 1);
len = fread(&srcbuf.at(0), 1, len, fp);
srcbuf[len] = 0;
fclose(fp);
const GLchar *srcs[1];
srcs[0] = &srcbuf.at(0);
shader = glCreateShader(shaderType);
glShaderSource(shader, 1, srcs, NULL);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &val);
if (val != GL_TRUE) {
char log[4096];
GLsizei msglen;
glGetShaderInfoLog(shader, 4096, &msglen, log);
printf("%s\n", log);
// assert(val == GL_TRUE && "failed to compile shader");
printf("ERR: Failed to load or compile shader [ %s ]\n",
shaderSourceFilename);
return false;
}
printf("Load shader [ %s ] OK\n", shaderSourceFilename);
return true;
}
bool LinkShader(GLuint &prog, GLuint &vertShader, GLuint &fragShader) {
GLint val = 0;
if (prog != 0) {
glDeleteProgram(prog);
}
prog = glCreateProgram();
glAttachShader(prog, vertShader);
glAttachShader(prog, fragShader);
glLinkProgram(prog);
glGetProgramiv(prog, GL_LINK_STATUS, &val);
assert(val == GL_TRUE && "failed to link shader");
printf("Link shader OK\n");
return true;
}
void reshapeFunc(GLFWwindow *window, int w, int h) {
(void)window;
int fb_w, fb_h;
glfwGetFramebufferSize(window, &fb_w, &fb_h);
glViewport(0, 0, fb_w, fb_h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0, (float)w / (float)h, 0.1f, 1000.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
width = w;
height = h;
}
void keyboardFunc(GLFWwindow *window, int key, int scancode, int action,
int mods) {
(void)scancode;
(void)mods;
if (action == GLFW_PRESS || action == GLFW_REPEAT) {
// Close window
if (key == GLFW_KEY_Q || key == GLFW_KEY_ESCAPE) {
glfwSetWindowShouldClose(window, GL_TRUE);
}
}
}
void clickFunc(GLFWwindow *window, int button, int action, int mods) {
double x, y;
glfwGetCursorPos(window, &x, &y);
bool shiftPressed = (mods & GLFW_MOD_SHIFT);
bool ctrlPressed = (mods & GLFW_MOD_CONTROL);
if ((button == GLFW_MOUSE_BUTTON_LEFT) && (!shiftPressed) && (!ctrlPressed)) {
mouseLeftPressed = true;
mouseMiddlePressed = false;
mouseRightPressed = false;
if (action == GLFW_PRESS) {
int id = -1;
// int id = ui.Proc(x, y);
if (id < 0) { // outside of UI
trackball(prev_quat, 0.0, 0.0, 0.0, 0.0);
}
} else if (action == GLFW_RELEASE) {
mouseLeftPressed = false;
}
}
if ((button == GLFW_MOUSE_BUTTON_RIGHT) ||
((button == GLFW_MOUSE_BUTTON_LEFT) && ctrlPressed)) {
if (action == GLFW_PRESS) {
mouseRightPressed = true;
mouseLeftPressed = false;
mouseMiddlePressed = false;
} else if (action == GLFW_RELEASE) {
mouseRightPressed = false;
}
}
if ((button == GLFW_MOUSE_BUTTON_MIDDLE) ||
((button == GLFW_MOUSE_BUTTON_LEFT) && shiftPressed)) {
if (action == GLFW_PRESS) {
mouseMiddlePressed = true;
mouseLeftPressed = false;
mouseRightPressed = false;
} else if (action == GLFW_RELEASE) {
mouseMiddlePressed = false;
}
}
}
void motionFunc(GLFWwindow *window, double mouse_x, double mouse_y) {
(void)window;
float rotScale = 1.0f;
float transScale = 2.0f;
if (mouseLeftPressed) {
trackball(prev_quat, rotScale * (2.0f * prevMouseX - width) / (float)width,
rotScale * (height - 2.0f * prevMouseY) / (float)height,
rotScale * (2.0f * mouse_x - width) / (float)width,
rotScale * (height - 2.0f * mouse_y) / (float)height);
add_quats(prev_quat, curr_quat, curr_quat);
} else if (mouseMiddlePressed) {
eye[0] += -transScale * (mouse_x - prevMouseX) / (float)width;
lookat[0] += -transScale * (mouse_x - prevMouseX) / (float)width;
eye[1] += transScale * (mouse_y - prevMouseY) / (float)height;
lookat[1] += transScale * (mouse_y - prevMouseY) / (float)height;
} else if (mouseRightPressed) {
eye[2] += transScale * (mouse_y - prevMouseY) / (float)height;
lookat[2] += transScale * (mouse_y - prevMouseY) / (float)height;
}
// Update mouse point
prevMouseX = mouse_x;
prevMouseY = mouse_y;
}
static size_t ComponentTypeByteSize(int type) {
switch (type) {
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE:
case TINYGLTF_COMPONENT_TYPE_BYTE:
return sizeof(char);
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT:
case TINYGLTF_COMPONENT_TYPE_SHORT:
return sizeof(short);
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT:
case TINYGLTF_COMPONENT_TYPE_INT:
return sizeof(int);
case TINYGLTF_COMPONENT_TYPE_FLOAT:
return sizeof(float);
case TINYGLTF_COMPONENT_TYPE_DOUBLE:
return sizeof(double);
default:
return 0;
}
}
static void SetupMeshState(tinygltf::Model &model, GLuint progId) {
// Buffer
{
for (size_t i = 0; i < model.bufferViews.size(); i++) {
const tinygltf::BufferView &bufferView = model.bufferViews[i];
if (bufferView.target == 0) {
std::cout << "WARN: bufferView.target is zero" << std::endl;
continue; // Unsupported bufferView.
}
int sparse_accessor = -1;
for (size_t a_i = 0; a_i < model.accessors.size(); ++a_i) {
const auto &accessor = model.accessors[a_i];
if (accessor.bufferView == i) {
std::cout << i << " is used by accessor " << a_i << std::endl;
if (accessor.sparse.isSparse) {
std::cout
<< "WARN: this bufferView has at least one sparse accessor to "
"it. We are going to load the data as patched by this "
"sparse accessor, not the original data"
<< std::endl;
sparse_accessor = a_i;
break;
}
}
}
const tinygltf::Buffer &buffer = model.buffers[bufferView.buffer];
GLBufferState state;
glGenBuffers(1, &state.vb);
glBindBuffer(bufferView.target, state.vb);
std::cout << "buffer.size= " << buffer.data.size()
<< ", byteOffset = " << bufferView.byteOffset << std::endl;
if (sparse_accessor < 0)
glBufferData(bufferView.target, bufferView.byteLength,
&buffer.data.at(0) + bufferView.byteOffset,
GL_STATIC_DRAW);
else {
const auto accessor = model.accessors[sparse_accessor];
// copy the buffer to a temporary one for sparse patching
unsigned char *tmp_buffer = new unsigned char[bufferView.byteLength];
memcpy(tmp_buffer, buffer.data.data() + bufferView.byteOffset,
bufferView.byteLength);
const size_t size_of_object_in_buffer =
ComponentTypeByteSize(accessor.componentType);
const size_t size_of_sparse_indices =
ComponentTypeByteSize(accessor.sparse.indices.componentType);
const auto &indices_buffer_view =
model.bufferViews[accessor.sparse.indices.bufferView];
const auto &indices_buffer = model.buffers[indices_buffer_view.buffer];
const auto &values_buffer_view =
model.bufferViews[accessor.sparse.values.bufferView];
const auto &values_buffer = model.buffers[values_buffer_view.buffer];
for (size_t sparse_index = 0; sparse_index < accessor.sparse.count;
++sparse_index) {
int index = 0;
// std::cout << "accessor.sparse.indices.componentType = " <<
// accessor.sparse.indices.componentType << std::endl;
switch (accessor.sparse.indices.componentType) {
case TINYGLTF_COMPONENT_TYPE_BYTE:
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE:
index = (int)*(
unsigned char *)(indices_buffer.data.data() +
indices_buffer_view.byteOffset +
accessor.sparse.indices.byteOffset +
(sparse_index * size_of_sparse_indices));
break;
case TINYGLTF_COMPONENT_TYPE_SHORT:
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT:
index = (int)*(
unsigned short *)(indices_buffer.data.data() +
indices_buffer_view.byteOffset +
accessor.sparse.indices.byteOffset +
(sparse_index * size_of_sparse_indices));
break;
case TINYGLTF_COMPONENT_TYPE_INT:
case TINYGLTF_COMPONENT_TYPE_UNSIGNED_INT:
index = (int)*(
unsigned int *)(indices_buffer.data.data() +
indices_buffer_view.byteOffset +
accessor.sparse.indices.byteOffset +
(sparse_index * size_of_sparse_indices));
break;
}
std::cout << "updating sparse data at index : " << index
<< std::endl;
// index is now the target of the sparse index to patch in
const unsigned char *read_from =
values_buffer.data.data() +
(values_buffer_view.byteOffset +
accessor.sparse.values.byteOffset) +
(sparse_index * (size_of_object_in_buffer * accessor.type));
/*
std::cout << ((float*)read_from)[0] << "\n";
std::cout << ((float*)read_from)[1] << "\n";
std::cout << ((float*)read_from)[2] << "\n";
*/
unsigned char *write_to =
tmp_buffer + index * (size_of_object_in_buffer * accessor.type);
memcpy(write_to, read_from, size_of_object_in_buffer * accessor.type);
}
// debug:
/*for(size_t p = 0; p < bufferView.byteLength/sizeof(float); p++)
{
float* b = (float*)tmp_buffer;
std::cout << "modified_buffer [" << p << "] = " << b[p] << '\n';
}*/
glBufferData(bufferView.target, bufferView.byteLength, tmp_buffer,
GL_STATIC_DRAW);
delete[] tmp_buffer;
}
glBindBuffer(bufferView.target, 0);
gBufferState[i] = state;
}
}
#if 0 // TODO(syoyo): Implement
// Texture
{
for (size_t i = 0; i < model.meshes.size(); i++) {
const tinygltf::Mesh &mesh = model.meshes[i];
gMeshState[mesh.name].diffuseTex.resize(mesh.primitives.size());
for (size_t primId = 0; primId < mesh.primitives.size(); primId++) {
const tinygltf::Primitive &primitive = mesh.primitives[primId];
gMeshState[mesh.name].diffuseTex[primId] = 0;
if (primitive.material < 0) {
continue;
}
tinygltf::Material &mat = model.materials[primitive.material];
// printf("material.name = %s\n", mat.name.c_str());
if (mat.values.find("diffuse") != mat.values.end()) {
std::string diffuseTexName = mat.values["diffuse"].string_value;
if (model.textures.find(diffuseTexName) != model.textures.end()) {
tinygltf::Texture &tex = model.textures[diffuseTexName];
if (scene.images.find(tex.source) != model.images.end()) {
tinygltf::Image &image = model.images[tex.source];
GLuint texId;
glGenTextures(1, &texId);
glBindTexture(tex.target, texId);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameterf(tex.target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(tex.target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Ignore Texture.fomat.
GLenum format = GL_RGBA;
if (image.component == 3) {
format = GL_RGB;
}
glTexImage2D(tex.target, 0, tex.internalFormat, image.width,
image.height, 0, format, tex.type,
&image.image.at(0));
CheckErrors("texImage2D");
glBindTexture(tex.target, 0);
printf("TexId = %d\n", texId);
gMeshState[mesh.name].diffuseTex[primId] = texId;
}
}
}
}
}
}
#endif
glUseProgram(progId);
GLint vtloc = glGetAttribLocation(progId, "in_vertex");
GLint nrmloc = glGetAttribLocation(progId, "in_normal");
GLint uvloc = glGetAttribLocation(progId, "in_texcoord");
// GLint diffuseTexLoc = glGetUniformLocation(progId, "diffuseTex");
GLint isCurvesLoc = glGetUniformLocation(progId, "uIsCurves");
gGLProgramState.attribs["POSITION"] = vtloc;
gGLProgramState.attribs["NORMAL"] = nrmloc;
gGLProgramState.attribs["TEXCOORD_0"] = uvloc;
// gGLProgramState.uniforms["diffuseTex"] = diffuseTexLoc;
gGLProgramState.uniforms["isCurvesLoc"] = isCurvesLoc;
};
#if 0 // TODO(syoyo): Implement
// Setup curves geometry extension
static void SetupCurvesState(tinygltf::Scene &scene, GLuint progId) {
// Find curves primitive.
{
std::map<std::string, tinygltf::Mesh>::const_iterator it(
scene.meshes.begin());
std::map<std::string, tinygltf::Mesh>::const_iterator itEnd(
scene.meshes.end());
for (; it != itEnd; it++) {
const tinygltf::Mesh &mesh = it->second;
// Currently we only support one primitive per mesh.
if (mesh.primitives.size() > 1) {
continue;
}
for (size_t primId = 0; primId < mesh.primitives.size(); primId++) {
const tinygltf::Primitive &primitive = mesh.primitives[primId];
gMeshState[mesh.name].diffuseTex[primId] = 0;
if (primitive.material.empty()) {
continue;
}
bool has_curves = false;
if (primitive.extras.IsObject()) {
if (primitive.extras.Has("ext_mode")) {
const tinygltf::Value::Object &o =
primitive.extras.Get<tinygltf::Value::Object>();
const tinygltf::Value &ext_mode = o.find("ext_mode")->second;
if (ext_mode.IsString()) {
const std::string &str = ext_mode.Get<std::string>();
if (str.compare("curves") == 0) {
has_curves = true;
}
}
}
}
if (!has_curves) {
continue;
}
// Construct curves buffer
const tinygltf::Accessor &vtx_accessor =
scene.accessors[primitive.attributes.find("POSITION")->second];
const tinygltf::Accessor &nverts_accessor =
scene.accessors[primitive.attributes.find("NVERTS")->second];
const tinygltf::BufferView &vtx_bufferView =
scene.bufferViews[vtx_accessor.bufferView];
const tinygltf::BufferView &nverts_bufferView =
scene.bufferViews[nverts_accessor.bufferView];
const tinygltf::Buffer &vtx_buffer =
scene.buffers[vtx_bufferView.buffer];
const tinygltf::Buffer &nverts_buffer =
scene.buffers[nverts_bufferView.buffer];
// std::cout << "vtx_bufferView = " << vtx_accessor.bufferView <<
// std::endl;
// std::cout << "nverts_bufferView = " << nverts_accessor.bufferView <<
// std::endl;
// std::cout << "vtx_buffer.size = " << vtx_buffer.data.size() <<
// std::endl;
// std::cout << "nverts_buffer.size = " << nverts_buffer.data.size() <<
// std::endl;
const int *nverts =
reinterpret_cast<const int *>(nverts_buffer.data.data());
const float *vtx =
reinterpret_cast<const float *>(vtx_buffer.data.data());
// Convert to GL_LINES data.
std::vector<float> line_pts;
size_t vtx_offset = 0;
for (int k = 0; k < static_cast<int>(nverts_accessor.count); k++) {
for (int n = 0; n < nverts[k] - 1; n++) {
line_pts.push_back(vtx[3 * (vtx_offset + n) + 0]);
line_pts.push_back(vtx[3 * (vtx_offset + n) + 1]);
line_pts.push_back(vtx[3 * (vtx_offset + n) + 2]);
line_pts.push_back(vtx[3 * (vtx_offset + n + 1) + 0]);
line_pts.push_back(vtx[3 * (vtx_offset + n + 1) + 1]);
line_pts.push_back(vtx[3 * (vtx_offset + n + 1) + 2]);
// std::cout << "p0 " << vtx[3 * (vtx_offset + n) + 0] << ", "
// << vtx[3 * (vtx_offset + n) + 1] << ", "
// << vtx[3 * (vtx_offset + n) + 2] << std::endl;
// std::cout << "p1 " << vtx[3 * (vtx_offset + n+1) + 0] << ", "
// << vtx[3 * (vtx_offset + n+1) + 1] << ", "
// << vtx[3 * (vtx_offset + n+1) + 2] << std::endl;
}
vtx_offset += nverts[k];
}
GLCurvesState state;
glGenBuffers(1, &state.vb);
glBindBuffer(GL_ARRAY_BUFFER, state.vb);
glBufferData(GL_ARRAY_BUFFER, line_pts.size() * sizeof(float),
line_pts.data(), GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
state.count = line_pts.size() / 3;
gCurvesMesh[mesh.name] = state;
// Material
tinygltf::Material &mat = scene.materials[primitive.material];
// printf("material.name = %s\n", mat.name.c_str());
if (mat.values.find("diffuse") != mat.values.end()) {
std::string diffuseTexName = mat.values["diffuse"].string_value;
if (scene.textures.find(diffuseTexName) != scene.textures.end()) {
tinygltf::Texture &tex = scene.textures[diffuseTexName];
if (scene.images.find(tex.source) != scene.images.end()) {
tinygltf::Image &image = scene.images[tex.source];
GLuint texId;
glGenTextures(1, &texId);
glBindTexture(tex.target, texId);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameterf(tex.target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(tex.target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// Ignore Texture.fomat.
GLenum format = GL_RGBA;
if (image.component == 3) {
format = GL_RGB;
}
glTexImage2D(tex.target, 0, tex.internalFormat, image.width,
image.height, 0, format, tex.type,
&image.image.at(0));
CheckErrors("texImage2D");
glBindTexture(tex.target, 0);
printf("TexId = %d\n", texId);
gMeshState[mesh.name].diffuseTex[primId] = texId;
}
}
}
}
}
}
glUseProgram(progId);
GLint vtloc = glGetAttribLocation(progId, "in_vertex");
GLint nrmloc = glGetAttribLocation(progId, "in_normal");
GLint uvloc = glGetAttribLocation(progId, "in_texcoord");
GLint diffuseTexLoc = glGetUniformLocation(progId, "diffuseTex");
GLint isCurvesLoc = glGetUniformLocation(progId, "uIsCurves");
gGLProgramState.attribs["POSITION"] = vtloc;
gGLProgramState.attribs["NORMAL"] = nrmloc;
gGLProgramState.attribs["TEXCOORD_0"] = uvloc;
gGLProgramState.uniforms["diffuseTex"] = diffuseTexLoc;
gGLProgramState.uniforms["uIsCurves"] = isCurvesLoc;
};
#endif
static void DrawMesh(tinygltf::Model &model, const tinygltf::Mesh &mesh) {
//// Skip curves primitive.
// if (gCurvesMesh.find(mesh.name) != gCurvesMesh.end()) {
// return;
//}
// if (gGLProgramState.uniforms["diffuseTex"] >= 0) {
// glUniform1i(gGLProgramState.uniforms["diffuseTex"], 0); // TEXTURE0
//}
if (gGLProgramState.uniforms["isCurvesLoc"] >= 0) {
glUniform1i(gGLProgramState.uniforms["isCurvesLoc"], 0);
}
for (size_t i = 0; i < mesh.primitives.size(); i++) {
const tinygltf::Primitive &primitive = mesh.primitives[i];
if (primitive.indices < 0) return;
// Assume TEXTURE_2D target for the texture object.
// glBindTexture(GL_TEXTURE_2D, gMeshState[mesh.name].diffuseTex[i]);
std::map<std::string, int>::const_iterator it(primitive.attributes.begin());
std::map<std::string, int>::const_iterator itEnd(
primitive.attributes.end());
for (; it != itEnd; it++) {
assert(it->second >= 0);
const tinygltf::Accessor &accessor = model.accessors[it->second];
glBindBuffer(GL_ARRAY_BUFFER, gBufferState[accessor.bufferView].vb);
CheckErrors("bind buffer");
int size = 1;
if (accessor.type == TINYGLTF_TYPE_SCALAR) {
size = 1;
} else if (accessor.type == TINYGLTF_TYPE_VEC2) {
size = 2;
} else if (accessor.type == TINYGLTF_TYPE_VEC3) {
size = 3;
} else if (accessor.type == TINYGLTF_TYPE_VEC4) {
size = 4;
} else {
assert(0);
}
// it->first would be "POSITION", "NORMAL", "TEXCOORD_0", ...
if ((it->first.compare("POSITION") == 0) ||
(it->first.compare("NORMAL") == 0) ||
(it->first.compare("TEXCOORD_0") == 0)) {
if (gGLProgramState.attribs[it->first] >= 0) {
// Compute byteStride from Accessor + BufferView combination.
int byteStride =
accessor.ByteStride(model.bufferViews[accessor.bufferView]);
assert(byteStride != -1);
glVertexAttribPointer(gGLProgramState.attribs[it->first], size,
accessor.componentType,
accessor.normalized ? GL_TRUE : GL_FALSE,
byteStride, BUFFER_OFFSET(accessor.byteOffset));
CheckErrors("vertex attrib pointer");
glEnableVertexAttribArray(gGLProgramState.attribs[it->first]);
CheckErrors("enable vertex attrib array");
}
}
}
const tinygltf::Accessor &indexAccessor =
model.accessors[primitive.indices];
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,
gBufferState[indexAccessor.bufferView].vb);
CheckErrors("bind buffer");
int mode = -1;
if (primitive.mode == TINYGLTF_MODE_TRIANGLES) {
mode = GL_TRIANGLES;
} else if (primitive.mode == TINYGLTF_MODE_TRIANGLE_STRIP) {
mode = GL_TRIANGLE_STRIP;
} else if (primitive.mode == TINYGLTF_MODE_TRIANGLE_FAN) {
mode = GL_TRIANGLE_FAN;
} else if (primitive.mode == TINYGLTF_MODE_POINTS) {
mode = GL_POINTS;
} else if (primitive.mode == TINYGLTF_MODE_LINE) {
mode = GL_LINES;
} else if (primitive.mode == TINYGLTF_MODE_LINE_LOOP) {
mode = GL_LINE_LOOP;
} else {
assert(0);
}
glDrawElements(mode, indexAccessor.count, indexAccessor.componentType,
BUFFER_OFFSET(indexAccessor.byteOffset));
CheckErrors("draw elements");
{
std::map<std::string, int>::const_iterator it(
primitive.attributes.begin());
std::map<std::string, int>::const_iterator itEnd(
primitive.attributes.end());
for (; it != itEnd; it++) {
if ((it->first.compare("POSITION") == 0) ||
(it->first.compare("NORMAL") == 0) ||
(it->first.compare("TEXCOORD_0") == 0)) {
if (gGLProgramState.attribs[it->first] >= 0) {
glDisableVertexAttribArray(gGLProgramState.attribs[it->first]);
}
}
}
}
}
}
#if 0 // TODO(syoyo): Implement
static void DrawCurves(tinygltf::Scene &scene, const tinygltf::Mesh &mesh) {
(void)scene;
if (gCurvesMesh.find(mesh.name) == gCurvesMesh.end()) {
return;
}
if (gGLProgramState.uniforms["isCurvesLoc"] >= 0) {
glUniform1i(gGLProgramState.uniforms["isCurvesLoc"], 1);
}
GLCurvesState &state = gCurvesMesh[mesh.name];
if (gGLProgramState.attribs["POSITION"] >= 0) {
glBindBuffer(GL_ARRAY_BUFFER, state.vb);
glVertexAttribPointer(gGLProgramState.attribs["POSITION"], 3, GL_FLOAT,
GL_FALSE, /* stride */ 0, BUFFER_OFFSET(0));
CheckErrors("curve: vertex attrib pointer");
glEnableVertexAttribArray(gGLProgramState.attribs["POSITION"]);
CheckErrors("curve: enable vertex attrib array");
}
glDrawArrays(GL_LINES, 0, state.count);
if (gGLProgramState.attribs["POSITION"] >= 0) {
glDisableVertexAttribArray(gGLProgramState.attribs["POSITION"]);
}
}
#endif
// Hierarchically draw nodes
static void DrawNode(tinygltf::Model &model, const tinygltf::Node &node) {
// Apply xform
glPushMatrix();
if (node.matrix.size() == 16) {
// Use `matrix' attribute
glMultMatrixd(node.matrix.data());
} else {
// Assume Trans x Rotate x Scale order
if (node.scale.size() == 3) {
glScaled(node.scale[0], node.scale[1], node.scale[2]);
}
if (node.rotation.size() == 4) {
glRotated(node.rotation[0], node.rotation[1], node.rotation[2],
node.rotation[3]);
}
if (node.translation.size() == 3) {
glTranslated(node.translation[0], node.translation[1],
node.translation[2]);
}
}
// std::cout << "node " << node.name << ", Meshes " << node.meshes.size() <<
// std::endl;
// std::cout << it->first << std::endl;
// FIXME(syoyo): Refactor.
// DrawCurves(scene, it->second);
if (node.mesh > -1) {
assert(node.mesh < model.meshes.size());
DrawMesh(model, model.meshes[node.mesh]);
}
// Draw child nodes.
for (size_t i = 0; i < node.children.size(); i++) {
assert(node.children[i] < model.nodes.size());
DrawNode(model, model.nodes[node.children[i]]);
}
glPopMatrix();
}
static void DrawModel(tinygltf::Model &model) {
#if 0
std::map<std::string, tinygltf::Mesh>::const_iterator it(scene.meshes.begin());
std::map<std::string, tinygltf::Mesh>::const_iterator itEnd(scene.meshes.end());
for (; it != itEnd; it++) {
DrawMesh(scene, it->second);
DrawCurves(scene, it->second);
}
#else
// If the glTF asset has at least one scene, and doesn't define a default one
// just show the first one we can find
assert(model.scenes.size() > 0);
int scene_to_display = model.defaultScene > -1 ? model.defaultScene : 0;
const tinygltf::Scene &scene = model.scenes[scene_to_display];
for (size_t i = 0; i < scene.nodes.size(); i++) {
DrawNode(model, model.nodes[scene.nodes[i]]);
}
#endif
}
static void Init() {
trackball(curr_quat, 0, 0, 0, 0);
eye[0] = 0.0f;
eye[1] = 0.0f;
eye[2] = CAM_Z;
lookat[0] = 0.0f;
lookat[1] = 0.0f;
lookat[2] = 0.0f;
up[0] = 0.0f;
up[1] = 1.0f;
up[2] = 0.0f;
}
static void PrintNodes(const tinygltf::Scene &scene) {
for (size_t i = 0; i < scene.nodes.size(); i++) {
std::cout << "node.name : " << scene.nodes[i] << std::endl;
}
}
int main(int argc, char **argv) {
if (argc < 2) {
std::cout << "glview input.gltf <scale>" << std::endl;
std::cout << "defaulting to example cube model" << std::endl;
}
float scale = 1.0f;
if (argc > 2) {
scale = atof(argv[2]);
}
tinygltf::Model model;
tinygltf::TinyGLTF loader;
std::string err;
std::string warn;
#ifdef _WIN32
#ifdef _DEBUG
std::string input_filename(argv[1] ? argv[1]
: "../../../models/Cube/Cube.gltf");
#endif
#else
std::string input_filename(argv[1] ? argv[1] : "../../models/Cube/Cube.gltf");
#endif
std::string ext = GetFilePathExtension(input_filename);
bool ret = false;
if (ext.compare("glb") == 0) {
// assume binary glTF.
ret =
loader.LoadBinaryFromFile(&model, &err, &warn, input_filename.c_str());
} else {
// assume ascii glTF.
ret = loader.LoadASCIIFromFile(&model, &err, &warn, input_filename.c_str());
}
if (!warn.empty()) {
printf("Warn: %s\n", warn.c_str());
}
if (!err.empty()) {
printf("ERR: %s\n", err.c_str());
}
if (!ret) {
printf("Failed to load .glTF : %s\n", argv[1]);
exit(-1);
}
Init();
// DBG
PrintNodes(model.scenes[model.defaultScene > -1 ? model.defaultScene : 0]);
if (!glfwInit()) {
std::cerr << "Failed to initialize GLFW." << std::endl;
return -1;
}
std::stringstream ss;
ss << "Simple glTF viewer: " << input_filename;
std::string title = ss.str();
window = glfwCreateWindow(width, height, title.c_str(), NULL, NULL);
if (window == NULL) {
std::cerr << "Failed to open GLFW window. " << std::endl;
glfwTerminate();
return 1;
}
glfwGetWindowSize(window, &width, &height);
glfwMakeContextCurrent(window);
// Callback
glfwSetWindowSizeCallback(window, reshapeFunc);
glfwSetKeyCallback(window, keyboardFunc);
glfwSetMouseButtonCallback(window, clickFunc);
glfwSetCursorPosCallback(window, motionFunc);
glewExperimental = true; // This may be only true for linux environment.
if (glewInit() != GLEW_OK) {
std::cerr << "Failed to initialize GLEW." << std::endl;
return -1;
}
reshapeFunc(window, width, height);
GLuint vertId = 0, fragId = 0, progId = 0;
#ifdef _WIN32
#ifdef _DEBUG
const char *shader_frag_filename = "../shader.frag";
const char *shader_vert_filename = "../shader.vert";
#endif
#else
const char *shader_frag_filename = "shader.frag";
const char *shader_vert_filename = "shader.vert";
#endif
if (false == LoadShader(GL_VERTEX_SHADER, vertId, shader_vert_filename)) {
return -1;
}
CheckErrors("load vert shader");
if (false == LoadShader(GL_FRAGMENT_SHADER, fragId, shader_frag_filename)) {
return -1;
}
CheckErrors("load frag shader");
if (false == LinkShader(progId, vertId, fragId)) {
return -1;
}
CheckErrors("link");
{
// At least `in_vertex` should be used in the shader.
GLint vtxLoc = glGetAttribLocation(progId, "in_vertex");
if (vtxLoc < 0) {
printf("vertex loc not found.\n");
exit(-1);
}
}
glUseProgram(progId);
CheckErrors("useProgram");
SetupMeshState(model, progId);
// SetupCurvesState(model, progId);
CheckErrors("SetupGLState");
std::cout << "# of meshes = " << model.meshes.size() << std::endl;
while (glfwWindowShouldClose(window) == GL_FALSE) {
glfwPollEvents();
glClearColor(0.1f, 0.2f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);