-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgen_screwDislocation.py
223 lines (221 loc) · 9.73 KB
/
gen_screwDislocation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/python
###############################################################################
# * F#
# DIST: A DIslocation-Simulation Toolkit 2 R#
# GNU License - Author: Zongrui Pei 2015-06-10 0 A#
# Version 1.0 1 N#
# 5 K#
# Syntax: 0 F#
# Please find the syntx in the howto.dat of the examples folder 6 U#
# and the CPC paper: Zongrui Pei, DIST: A DIslocation-Simulation Toolkit, 1 R#
# Computer Physics Communications 233(2018)44-50. 0 T#
# * *#
###############################################################################
from __future__ import print_function
import numpy as np
from numpy import pi,arccos,arctan
from numpy.linalg import inv
import sys
class gen_disl():
"""generate a dislocation"""
def __init__(self,filename):
self.filename=filename
self.latt_para=1.0
self.b=1.0
self.num_disl=2
self.sys_name=""
self.coord_type="" #"Direct" #"Cartesian"
self.coord=np.array([[1.0,0.0,0.0],[0.0,1.0,0.0],[0.0,0.0,1.0]])
self.atoms_pos=[]
self.N=[1,1,1] #default, will read from structural file
self.n_unit=[]
self.mag_coord=np.array([[1.0,0.0,0.0],[0.0,1.0,0.0],[0.0,0.0,1.0]])
self.disl_centers=[]
self.sub_matr2x2=[]
self.sign=[]
self.mag_atoms_pos=[]
self.disl_center=np.array([0,0])
self.disl_atoms_pos=[]
self.disl_atoms_pos_in=[]
self.period_N=20 # used to calculate u_err to get absolutely convergent strain field
#self.magnify_cell()
def read_data(self):
with open(self.filename,'r') as in_file:
count=1
for line in in_file:
ll=line.split()
if count==1:
if len(ll)==6:
self.sys_name,self.b,self.num_disl, self.N=ll[0],float(ll[1]),float(ll[2]),[int(ll[3]),int(ll[4]),int(ll[5])]
elif len(ll)==5:
self.sys_name,self.b,self.N=ll[0],float(ll[1]),[int(ll[2]),int(ll[3]),int(ll[4])]
elif len(ll)==3:
self.sys_name,self.b,self.num_disl=ll[0],float(ll[1]),int(ll[2])
elif len(ll)==2:
self.sys_name,self.b=ll[0],float(ll[1])
else:
return None
print("Error with the first line of input file!")
if count==2: self.latt_para,self.b=float(ll[0]),self.b*float(ll[0])
if count>2 and count<6:
self.coord[count-3]=np.array([float(ll[0]),float(ll[1]),float(ll[2])])
if count==6:
for i in ll:
self.n_unit.append(int(i))
if 'Cartesian' in line:
self.coord_type='Cartesian'
break
if 'Direct' in line:
self.coord_type='Direct'
break
count +=1
for line in in_file:
if line != '\n':
ll = line.split()
ll[0],ll[1],ll[2]=float(ll[0]),float(ll[1]),float(ll[2])
self.atoms_pos.append(ll[0:3])
self.mag_atoms_pos.append([ll[0:3]])
def magnify_cell(self):
k1=0
for i in self.coord:
self.mag_coord[k1]=np.array([i[0]*self.N[0],i[1]*self.N[1],self.N[2]*i[2]])*self.latt_para
k1 +=1
if k1==3: break #exit
n0=len(self.atoms_pos)
if n0 != sum(self.n_unit): print("Some atomic positions are missing!")
if self.coord_type == 'Direct':
for ix in range(0,self.N[0]):
for iy in range(0,self.N[1]):
for iz in range(0,self.N[2]):
for k in range(0,n0):
mag_atom = self.atoms_pos[k]+ix*np.array([1,0,0])+iy*np.array([0,1,0])+iz*np.array([0,0,1])
mag_atom = mag_atom/self.N #/[2.0,2.0,1.0]
mag_atom = np.dot(self.mag_coord,mag_atom) #self.mag_coord.transpose().dot(mag_atom)
self.mag_atoms_pos[k].append(mag_atom)
elif self.coord_type == 'Cartesian':
for k in range(0,n0):
for ix in range(0,self.N[0]):
for iy in range(0,self.N[1]):
for iz in range(0,self.N[2]):
mag_atom =np.asarray(self.atoms_pos[k])+np.dot(self.coord,np.array([ix,iy,iz])) #self.coord.transpose().dot(np.array([ix,iy,iz]))#ix*self.coord[0]+iy*self.coord[1]
self.mag_atoms_pos[k].append(mag_atom) #*self.latt_para) #? /self.N
#print mag_atom, "after:"," ",self.mag_atoms_pos[k]
else: return None
def cal_disl_pattern(self):
L0=np.array([self.mag_coord[0][0],self.mag_coord[0][1]])
L1=np.array([self.mag_coord[1][0],self.mag_coord[1][1]])
#self.x0=0.5*(np.dot(L0,L0)+np.dot(L0,L1))/\
# (np.dot(L0,L0)+np.dot(L1,L1)+4*np.dot(L0,L1))
# for Left bottom right up
self.x0=0.5*(np.dot(L0,L1)+np.dot(L1,L1))/\
(np.dot(L0,L0)+np.dot(L1,L1)+2*np.dot(L0,L1))
#need to remove this line!!!!!!!!!!!!!!!!!!!!!!!!!!!!
self.x0=1.0/3 #-0.017
L2,L3=L0,(1-2*self.x0)*(L0+L1)
self.theta0=arccos(np.dot(L2,L3)/np.dot(L2,L2)**0.5/np.dot(L3,L3)**0.5)
# define self.disl_centers, self.sign, sub_matr2x2
disl_centers=[]
if self.num_disl==4:
self.sign=np.array([1,-1,-1,1])
disl_centers=np.array([[0.25,0.25],[0.25,0.75],[0.75,0.25],[0.75,0.75]])
elif self.num_disl==2:
self.sign=np.array([-1,1]) #np.array([1,-1])
disl_centers=np.array([[self.x0,self.x0],[1-self.x0,1-self.x0]])
#disl_centers=np.array([[self.x0,1-self.x0],[1-self.x0,self.x0]])
elif self.num_disl==1:
self.sign=np.array([1])
disl_centers=np.array([[0.0,0.0]])
else: return None
self.sub_matr2x2=np.array([[self.mag_coord[0][0],self.mag_coord[0][1]],
[self.mag_coord[1][0],self.mag_coord[1][1]]])
self.disl_centers=np.dot(disl_centers,self.sub_matr2x2)
def angle(self,x,y):
if x==0:
if y>=0: return pi/2.0
if y<0: return 3*pi/2.0
elif x>0:
if y >=0 : return arctan(y/x)
if y <0: return 2*pi+arctan(y/x)
elif x<0 : return pi+arctan(y/x)
def adjust_angle(self,x,y):
start_angle=self.theta0 # adjust the starting angle, currently not useful, but not harmful
adjusted_angle=self.angle(x,y)+start_angle
while (adjusted_angle <0): adjusted_angle += 2*pi
while (adjusted_angle >2*pi): adjusted_angle -= 2*pi
return adjusted_angle
#recover the periodicity of the dislocation strain field by adding ghost dislocation
def get_u_err(self):
u_arr=[]
# the three corners, OO,OA,OB
corner_pts=np.array([[0.,0.],[self.sub_matr2x2[0][0],self.sub_matr2x2[0][1]],\
[self.sub_matr2x2[1][0],self.sub_matr2x2[1][1]]])
for pts in corner_pts:
u_pts=0.
for i in range(0,self.num_disl):
for jx in range(0,self.period_N): #20):
for jy in range(0,self.period_N): #20):
new_center=(jx-self.period_N/2)*self.sub_matr2x2[0]+(jy-self.period_N/2)*self.sub_matr2x2[1]+self.disl_centers[i]
dc_x,dc_y=new_center[0],new_center[1]
u_pts +=self.b/(2*pi)*self.sign[i]*self.adjust_angle(pts[0]-dc_x,pts[1]-dc_y)
u_arr.append(u_pts)
OAB_mat=np.array([[corner_pts[0][0],corner_pts[0][1],1.],
[corner_pts[1][0],corner_pts[1][1],1.],
[corner_pts[2][0],corner_pts[2][1],1.]])
g_mat=np.dot(np.linalg.inv(OAB_mat),np.asarray(u_arr))
g_vec,g0=g_mat[0:2],g_mat[2]
return g_vec, g0
def theta(self,x,y,N): #,theta0):
shift_z=0
for i in range(0,self.num_disl):
for jx in range(0,self.period_N): #20):
for jy in range(0,self.period_N): #20):
new_center=(jx-self.period_N/2)*self.sub_matr2x2[0]+ \
(jy-self.period_N/2)*self.sub_matr2x2[1]+self.disl_centers[i]
dc_x,dc_y=new_center[0],new_center[1]
shift_z +=self.b/(2*pi)*self.sign[i]*self.adjust_angle(x-dc_x,y-dc_y)
return shift_z
def displace_atoms(self):
self.read_data()
self.magnify_cell()
self.cal_disl_pattern()
g_vec,g0=self.get_u_err() # get the g_vec, g0 to restore the periodicity
for i_unitCell in range(0,sum(self.n_unit)):
self.mag_atoms_pos[i_unitCell].pop(0)
for j in range(0,len(self.mag_atoms_pos[i_unitCell])):
i=self.mag_atoms_pos[i_unitCell][j]
#for i in self.mag_atoms_pos[i_unitCell]:
u_err=np.dot(g_vec,np.array([i[0],i[1]]))
i[2] += self.theta(i[0],i[1],self.num_disl)-u_err
self.disl_atoms_pos.append(i)
def in_box(self,atom_pos):
for i in range(0,3):
while(atom_pos[i]<0.0): atom_pos[i]=atom_pos[i]+1.0
while( atom_pos[i]>=1.0): atom_pos[i]=atom_pos[i]-1.0
return atom_pos
def move_in_box(self):
atom_in_direct=[]
for i in self.disl_atoms_pos:
i=self.in_box(np.dot(inv(self.mag_coord.transpose()),i))
atom_in_direct.append(i)
if self.coord_type=='Cartesian':
for i in atom_in_direct:
i=np.dot(self.mag_coord.transpose(),i)
self.disl_atoms_pos_in.append(i)
else:
self.disl_atoms_pos_in=atom_in_direct
def print_disl(self):
self.displace_atoms()
self.move_in_box()
print(self.sys_name)
print(1.0) #self.latt_para
for i in range(0,3):
print(format(self.mag_coord[i,0],"03f")," ",format(self.mag_coord[i,1],"03f")," ",format(self.mag_coord[i,2],"03f"))
str_atom_num=""
for i in self.N[0]*self.N[1]*self.N[2]*np.asarray(self.n_unit):
str_atom_num += str(self.n_unit[i])+" "
print(str_atom_num)
print("Cartesian") #self.coord_type
for i in self.disl_atoms_pos_in:
print(format(i[0],"03f")," ",format(i[1], "03f")," ",format(i[2],"03f"))
disl1=gen_disl(sys.argv[1])#"unit_cell")
disl1.print_disl()