-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
165 lines (127 loc) · 5.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import json
import argparse
import torch
import random
import torch.optim as optim
from model_vc import StyleEncoder
from model_vc import Generator
from dataset import AudiobookDataset
from dataset import train_collate
from dataset import test_collate
from utils.dsp import save_wav
import numpy as np
from hparams import hparams as hp
def save_checkpoint(device, model, optimizer, checkpoint_dir, epoch):
checkpoint_path = os.path.join(
checkpoint_dir, "checkpoint_step{:06d}.pth".format(epoch))
optimizer_state = optimizer.state_dict()
torch.save({
"model": model.state_dict(),
"optimizer": optimizer_state,
"epoch": epoch
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def load_checkpoint(path, model, device, optimizer, reset_optimizer=False):
print("Load checkpoint from: {}".format(path))
checkpoint = torch.load(path, map_location=device)
model.load_state_dict(checkpoint["model"])
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
epoch = checkpoint['epoch']
return epoch
def train(args, model, device, train_loader, optimizer, epoch, sigma=1.0):
model.train()
train_loss = 0
for batch_idx, (m, e) in enumerate(train_loader):
m = m.to(device)
e = e.to(device)
model.zero_grad()
mel_outputs, mel_outputs_postnet, codes = model(m, e, e)
m_rec = mel_outputs_postnet
codes_rec = model(m_rec, e, None)
L_recon = ((mel_outputs_postnet - m) ** 2).sum(dim=(1,2)).mean()
L_recon0 = ((mel_outputs - m) ** 2).sum(dim=(1,2)).mean()
L_content = torch.abs(codes - codes_rec).sum(dim=1).mean()
loss = L_recon + L_recon0 + L_content
loss.backward()
optimizer.step()
train_loss += loss.item() * len(m)
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(m), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
train_loss /= len(train_loader.dataset)
print('\nTrain set: Average loss: {:.4f}\n'.format(train_loss))
def test(model, device, test_loader, checkpoint_dir, epoch, sigma=1.0):
print("Using averaged model for evaluation")
model.eval()
test_loss = 0
with torch.no_grad():
for batch_idx, (m, e) in enumerate(test_loader):
m = m.to(device)
e = e.to(device)
mel_outputs, mel_outputs_postnet, codes = model(m, e, e)
m_rec = mel_outputs_postnet
codes_rec = model(m_rec, e, None)
L_recon = ((mel_outputs_postnet - m) ** 2).sum(dim=(1,2)).mean()
L_recon0 = ((mel_outputs - m) ** 2).sum(dim=(1,2)).mean()
L_content = torch.abs(codes - codes_rec).sum(dim=1).mean()
loss = L_recon + L_recon0 + L_content
if batch_idx % 100 == 0:
print('Val Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(m), len(test_loader.dataset),
100. * batch_idx / len(test_loader), loss.item()))
test_loss += loss.item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}\n'.format(test_loss))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train or run some neural net')
parser.add_argument('-d', '--data', type=str, default='./data', help='dataset directory')
parser.add_argument('--checkpoint', type=str, default=None,
help='The path to checkpoint')
parser.add_argument('--epochs', type=int, default=600,
help='number of epochs to train (default: 14)')
parser.add_argument('--batch-size', type=int, default=8, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
args = parser.parse_args()
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
data_path = args.data
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {}
torch.autograd.set_detect_anomaly(True)
with open(os.path.join(data_path, 'train_data.json'), 'r') as f:
train_data = json.load(f)
with open(os.path.join(data_path, 'test_data.json'), 'r') as f:
test_data = json.load(f)
train_loader = torch.utils.data.DataLoader(
AudiobookDataset(train_data),
collate_fn=train_collate,
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
AudiobookDataset(test_data),
collate_fn=test_collate,
batch_size=1, shuffle=False, **kwargs)
model = Generator(hp.dim_neck, hp.dim_emb, hp.dim_pre, hp.freq).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
current_epoch = 0
if args.checkpoint:
current_epoch = load_checkpoint(args.checkpoint, model, device, optimizer)
checkpoint_dir = 'checkpoints'
os.makedirs(checkpoint_dir, exist_ok=True)
for epoch in range(current_epoch + 1, args.epochs + 1):
print(f'epoch {epoch}')
train(args, model, device, train_loader, optimizer, epoch)
if epoch % 10 == 0:
test(model, device, test_loader, checkpoint_dir, epoch)
save_checkpoint(device, model, optimizer, checkpoint_dir, epoch)